EDP308: STATISTICAL LITERACY

The University of Texas at Austin, Fall 2020
RAZ: Rebecca A. Zárate, MA

Overview

\square Predictions
\square The Line of Best Fit
\square Regression Line Equation

- Home Price Example
\square Multiple Regression
- Home Price Example
- Graduate School Example
- Attractiveness Example
\square Regression in R
- Simple Linear Regression
\square Multiple Linear Regression

Predictions

\square Of course we can not claim causation with a correlation, but we can try to use that correlation to make predications
\square Ex. If you studied X number of hours, you most likely get Y number of questions correct

Would higher or lower values of r result in more accurate predications?

Correlation vs. Regression

\square Correlations describe relationships between variables
\square Regression uses information from correlations to make predictions
\square So if you know how many hours someone studied, you can try to predict how many questions they answered correctly

Regression Analysis

\square Regression Analysis is used to measure the linear association between quantitative variables
\square Correlation: describes the strength of a relationship between two variables
\square Regression line: used to predict values for our response variable, Y, using our explanatory variable X

Studying and Questions Correct

If someone studied for 3 hours, how many questions would you predict they will answer correctly?

The Line of Best Fit

\square This is known as "the line of best fit," and it is out best guess predicting one variable from another.

Line of Best Fit

\square The Line of Best Fit is a regression statistic that attempts to find a line that crosses through the data points or minimizes the distance of points from the line.

Residue

\square The observed values in our data will usually be different from the values predicted from the regression line
\square The difference between our observed values and the predicted values from the regression line are called "residuals".

Residual $=$ Observed - Predicted

Do we want the residuals to be as small as possible or as big as possible?

Ordinary Least Squares

\square We want residuals to be as small as possible, the technique for doing this is called "Ordinary Least Squares"

Residual $=$ Observed - Predicted

- Observed $=$ Your Actual Score
- Predicted Score = My predication of your score based on how many hours you studied
- Residual = How off my prediction was

(We will not be doing the Ordinary Least Squares part.)

Regression Line Equation

\square After using the Ordinary Least Squares technique, it always turns out that the regression line is:

$$
\hat{y}=\beta_{0}+\beta_{1} * x
$$

\square Where:

$$
Y=b+m^{*} x
$$

$\square X$ is the observed value of the explanatory variable

- Ex. How many hours you studied.
- β_{1} (beta 1 , coefficient) is how much y is predicted to change if x increases by 1 unit. (i.e. β_{1} is the slope of the regression line)
■ Ex. For every additional hour you spend studying, your score goes up by $\times 1.5$
$\square \beta_{0}$ (beta zero) is the predicted value of y when $x=0$. (i.e. β_{0} is the y-intercept of the regression line)
- Ex. Your score if you didn't study at all.
- \hat{y} (y-hat) is the predicted value for our response variable.
- Ex. The score I predict you will get based on how many hours you studied

Regression Equation Example

Suppose the regression line equation to predict the selling price of a house from the size of the home in square feet is:

$$
\widehat{\text { price }}=9161+77 * \text { size }
$$

\square What is the explanatory variable, and what is the response variable?
\square What is the predicted price of a home that is 0 square feet?
\square If a house could increase its size by 1 square foot, how much would we expect the selling price of the home to change?
\square What is the predicted price of a house that was 2000 square feet?

- If this house (2000 square feet) actually sold for $\$ 160,000$, did our regression line overestimate, or underestimate the selling price? What was the residual?

Regression Equation Example

$$
\widehat{\text { price }}=9161+77 * \text { size }
$$

\square What is the explanatory variable, and what is the response variable?

- Size of the home (in square feet), selling price of the home (with the hat)
\square What is the predicted price of a home that is 0 square feet?
- $\beta_{0}=\$ 9161$
- If a house could increase its size by 1 square foot, how much would we expect the selling price of the home to change?
- $\beta_{1}=\$ 77$
\square What is the predicted price of a house that was 2000 square feet?
- $\$ 163,161=9161+77 * 2000$
\square If this house (2000 square feet) actually sold for $\$ 160,000$, did our regression line overestimate, or underestimate the selling price? What was the residual?

$$
\begin{gathered}
\text { Residual }=\text { Observed }- \text { Predicted } \\
-3,161=160,000-163,161
\end{gathered}
$$

Finding the Regression Line Equation

Using Ordinary Least Squares, the regression line equation is:

$$
\hat{y}=\beta_{0}+\beta_{1} * x
$$

Where:

- $\beta_{1}=r\left(\frac{s_{y}}{s_{x}}\right)$
- $\beta_{0}=\bar{y}-\left(\beta_{1} \bar{x}\right)$

Note: Because of the breakdown of the equations, it is usually best to find β_{1} first, and to find β_{0} second.

Finding the Regression Line Equation

The table shows the number of hours spent studying (explanatory), and the number of questions correct on a quiz (response).

You are given the following information:

$$
\begin{gathered}
\bar{X}_{\text {Hours }}=2.8, s_{\text {Hours }}=1.92 \\
\bar{Y}_{\text {Questions }}=6, s_{\text {Questions }}=3.54 \\
r=.96
\end{gathered}
$$

1. Find and interpret β_{1}.
2. Find and interpret β_{0}.
3. State the regression equation.

Hours	Questions
0	2
2	3
3	6
4	9
5	10

Finding the Regression Line Equation

\square Find and interpret β_{1}

$$
\begin{gathered}
\beta_{1}=r\left(\frac{S_{y}}{s_{x}}\right) \\
=.96 *\left(\frac{3.54}{1.92}\right) \approx 1.77
\end{gathered}
$$

For every additional hour you study, you are predicted to get another 1.77 questions correct.

Finding the Regression Line Equation

\square Find and interpret β_{0}

$$
\begin{gathered}
\beta_{0}=\bar{y}-\left(\beta_{1} \bar{x}\right) \\
=6-(1.77 * 2.8) \approx 1.044
\end{gathered}
$$

If you did not study at all, you are predicted to get 1.044 questions correct.

Finding the Regression Line Equation

\square State the regression equation:

$$
\text { Questions }=1.044+1.77(\text { Hours })
$$

The number of questions you get right increases by 1.77 for every hours you spend studying. If you did not study at all, you'd get ~ 1 question right

Regression Equation Example

$$
\text { Questions }=1.044+1.77(\text { Hours })
$$

\square What is your predicated y-hat (\hat{y}) value, i.e. your predicted score if you studied for for:

■ Four hours?

- Six hours?
$■$ Zero hours?

Regression Equation Example

Questions $=1.044+1.77($ Hours $)$

\square What is your predicated y-hat (\hat{y}) value, i.e. your predicted score if you studied for for:

- Four hours?

■ ~8
\square Six hours?
■ ~11.5
\square Zero hours?
■ ~1

Multiple Regression

Multiple Regression

\square Simple linear regression using one predictor variable is all well and good, but rarely are outcomes of interest explained by just one variable.
\square With multiple regression, we can add in more than one explanatory variable to try to predict a certain response variable outcome.

Multiple Regression

\square The examples are endless...
\square What variables predict the number of asthma related emergency department visist?

- What variables predict the risk of a person will have a heart attack in the next year?
- What variables predict your level of happiness?

What outcome would you like to run a regression on?

> What are you trying to predict?
> What variables do you think are important?

Multiple Regression

\square Linear regression can include multiple explanatory variables (in multiple regression) as in:

$$
\widehat{\text { price }}=\beta_{0}+\beta_{1} * \text { size }+\beta_{2} * \text { bedrooms }
$$

$\square \beta_{0}$ is the predicted selling price when all predictors (house size and number of bedrooms) are equal to 0 .
$\square \beta_{1}$ is the change in predicted selling price when house size increases by 1 square foot, holding the number of bedrooms constant.
$\square \beta_{2}$ is the change in predicted selling price when the number of bedrooms increases by 1 , holding house size constant.

Graduate School

\square Suppose the regression line equation predicts the chances of getting into graduate school from the following variables: GPA (in 4.0 format), Research Experience (in years), Publications (number of), and GRE (in GRE format)
grad $\widehat{a d m}$ score $=0+3 * G P A+4.5 *$ Research $+8 *$ Pub $+1 * G R E$

- $\beta_{1}(G P A)=3$
$\square \beta_{2}($ Research Exp. $)=4.5$
$\square \beta_{3}($ Publications $)=8$
- $\beta_{4}(G R E)=1$

Graduate School

\square What are the explanatory variables, and what is the outcome variable?
\square What is the predicted admission score if the applicant had no publications, no research experience, no GRE scores, and a GPA of 2.0?
\square Compute the graduate admissions score for the following scenarios:

```
Scenario 1:
GPA \(=3.5\)
Research Experience \(=1.5\) years
Publications \(=1\)
GRE \(=160\)
```

Scenario 2:
GPA $=3.8$
Research Experience $=0.5$ years
Publications $=0$
GRE $=167$

Graduate School

\square What are the explanatory variables, and what is the outcome variable?

- Explanatory: GPA, Research Experience, Publications, GRE
- Response: Graduate Admission Score
\square What is the predicted admission score if the applicant had no publications, no research experience, no GRE scores, and a GPA of 2.0?
- Predicted admission score $=6$
\square Compute the graduate admissions score for the following scenarios:

Scenario 1:
GPA $=3.5$
Research Experience $=1.5$ years
Publications $=1$
GRE $=160$

Scenario 2:
GPA $=3.8$
Research Experience $=0.5$ years
Publications $=0$
GRE $=167$

Graduate School

Scenario 1:
GPA $=3.5$
Research Experience $=1.5$ years
Publications $=1$
GRE $=160$

Scenario 2:
GPA $=3.8$

Research Experience $=0.5$ years
Publications $=0$
GRE $=167$

Scenario 1:

$$
185.25=0+3 * 3.5+4.5 * 1.5+8 * 1+1 * 160
$$

Scenario 2:

$$
180.650+3 * 3.8+4.5 * 0.5+8 * 0+1 * 167
$$

Multiple Regression Example: Attractiveness

\square What do you find to be the most important features about a partner?

- Intelligence?
\square Physical appearance?
- Humor?
- Athleticism?
\square Spiritual?
Create a regression equation for how attracted you are to someone based on the variables that are important to you.

attractiveness $=\beta_{0}+\beta_{1} *$ Intelligence $+\beta_{2} *$ Physical $\ldots \beta_{n}$
\square For our very last topic in this course, we will switch gears. The statistical tests we've looked at so far use quantitative data. Next we'll see what we can do with some categorical data...

Contingency Tables
 Chi-Squared Tests

Studying and Correct Answers in R

```
# The data
hours <- c(0,2,3,4,5)
questions <- c(2,3,6,9,10)
# Correlations are quick with "cor()"
cor(hours, questions)
# To run a simple linear regression in R, use the "lm()" function
regression_model <- lm(questions ~ hours)
# Then look at the output from the regression using the "summary()" function
summary(regression_model)
```


Studying and Correct Answers R Output

The Intercept: How many questions you'd get right if you didn't study at all.

The Coefficient/Slope, The Explanatory Variable. How many more questions you are expected to get right for each additional hour you study.

R-Squared: How much of the variance is accounted for by the model, here about 91%.
p -values for the predictor variable

Chance of Admission (Multiple Regression)

\square Here we are looking at a (real) dataset of 500 Indian students applying to graduate school. We are going to run a regression to try to determine what increases your chances of getting into grad school.

- Variables:
- Explanatory Variables
- GRE Score (out of 340)
- TOEFL Score (out of 120)
- University Rating (out of 5)
- Statement of Purpose, SOP (out of 5)

Which variables do you think will be most explain of getting into graduate school?

- Letters of Recommendation, LOR (out of 5)
- GPA (out of 10)
- Research Experience (binary variable, yes $=1$, no $=0$)
- Outcome Variable
- Chance of Admission (ranging from 0 to 1)

Chance of Admission (Multiple Regression)

```
##########################################
###### Multiple Linear Regression #######
#########################################
# The data
admissions <- read.csv("admission_predict.csv")
# Look at the variables
names(admissions)
# To run a simple linear regression in R, use the "lm()" function
admissions_model <- lm(ChanceofAdmit ~ GREScore + SOP + LOR + GPA + Research, data = admissions)
# Then look at the output from the regression using the "summary()" function
summary(admissions_model)
```

Multiple regression in R is the same as simple, but you just add more predictor variables with the " + " sign

Chance of Admission (Multiple Regression) Output

Which
explanatory
variables were significant? Which had the biggest affect on the chances of
getting into grad school?

```
Call:
lm(formula = ChanceofAdmit ~ GREScore + SOP + LOR + GPA + Research,
    data = admissions)
```

Residuals:
Min 1Q Median \quad 3Q Max

$$
\begin{array}{lllll}
-0.270994 & -0.023461 & 0.007897 & 0.035155 & 0.164322
\end{array}
$$

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) $-1.3379520 .102417-13.064<2 e-16$ ***
$\begin{array}{lllll}\text { GREScore } & 0.002677 & 0.000449 & 5.963 & 4.73 \mathrm{e}-09 \\ \text { *** }\end{array}$
$\begin{array}{lllll}\text { SOP } & 0.006175 & 0.004250 & 1.453 & 0.146874\end{array}$
$\begin{array}{lllrrl}\text { LOR } & 0.017902 & 0.004144 & 4.320 & 1.88 \mathrm{e}-05^{* * *} \\ \text { GPA } & 0.130108 & 0.009275 & 14.028 & <2 \mathrm{e}-16^{* * *} \\ \text { Ren } & 0.023930 & 0.00666 & 3.590 & 0.000364^{* * *}\end{array}$
Research $0.0239300 .006666 \quad 3.5900 .000364$ ***

Residual standard error: 0.06068 on 494 degrees of freedom Multiple R-squared: 0.817, Adjusted R-squared: 0.8151

Chance of Admission (Multiple Regression) Output

All but the statement of purpose (SOP) were significant. GPA appears to have the strongest affect on your chances of getting into graduate school.

About 81% of the variance in the chance for admission is explained by the model.

```
Call:
lm(formula = ChanceofAdmit ~ GREScore + SOP + LOR + GPA + Research,
        data = admissions)
Residuals:
    Min 1Q Median 3Q Max
-0.270994 -0.023461 0.007897 0.035155 0.164322
Coefficients:
Estimate Std. Error t value Pr(> | t |)
(Intercept) -1.337952 0.102417 -13.064 < 2e-16 ***
GREScore 0.002677 0.000449 5.963 4.73e-09 ***
SOP 0.006175 0.004250 1.453 0.146874
LOR 0.017902 0.004144 4.320 1.88e-05 ***
GPA 0.130108 0.009275 14.028 < 2e-16 ***
Research 0.023930 0.006666 3.590 0.000364 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' , 1
```

Residual standard error: 0.06068 on 494 degrees of freedom
Multiple R-squared: 0.817, Adjusted R-squared: 0.8151

