EDP308: STATISTICAL LITERACY

The University of Texas at Austin, Fall 2020 RAZ: Rebecca A. Zárate, MA

Overview

- □ From t to F
- The F Distribution
 - Degrees of Freedom
 - N-k
 - k-1
- Sum of Squares Refresher
- ANOVA Table Output
- Hypothesis Testing for ANOVA
- Pairwise Comparisons
- \Box ANOVA in R
 - Data

From t to F, ANOVA

t-tests have t-statistics

I know... I am sorry.

- ANOVA has an F-statistic
 - The larger the F-statistic, the more likely you are to reject the null hypothesis
- The idea behind the hypothesis test is still the same, figure out your cut off score and determine if the statistic you compute is in the critical region
 - Critical values are now based on two types of degrees of freedom
 - Degrees of Freedom for Sample Size (Within), N-k
 - N = total sample size
 - Degrees of Freedom for Number of Groups (Between), k-1
 - k = number of groups

Degrees of Freedom

- Degrees of Freedom for Sample Size, N-k
 - This is the degrees of freedom related to WITHIN, the denominator
 - $\blacksquare n_1 + n_2 + n_3 \dots n_k = N$
 - $df_w = N$ (total sample size) k (the number of groups)
- Degrees of Freedom for Number of Groups, k-1
 - This is the degrees of freedom related to BETWEEN, the numerator
 - $df_B = k$ (number of groups) 1

The F Distribution

In this table:

 df_1 refers to df_B

 df_2 refers to df_W .

To find a critical value for $\alpha = .05$, simply locate the F value for the appropriate degrees of freedom.

What is the critical F value for: N = 10k = 3

	lable	r Dist	Dution	for valu	les of h	ignt-rai	Proba	ability = 0	0.05		
						d,	r <u>ı</u> 1	lumber	of Gr	oups (k-1)
	df_2	1	2	3	4	5	6	8	12	24	
Ý	1	161.45	199.50	215.71	224.58	230.16	233.99	238.88	243.91	249.05	254.31
Z	2	18.51	19.00	19.16	19.25	19.30	19.33	19.37	19.41	19.45	19.50
ole	3	10.13	9.55	9.28	9.12	9.01	8.94	8.85	8.74	8.64	8.53
eo	4	7.71	6.94	6.59	6.39	6.26	6.16	6.04	5.91	5.77	5.63
کّ ب	5	6.61	5.79	5.41	5.19	5.05	4.95	4.82	4.68	4.53	4.37
л 0	6	5.99	5.14	4.76	4.53	4.39	4.28	4.15	4.00	3.84	3.67
pe	7	5.59	4.74	4.35	4.12	3.97	3.87	3.73	3.57	3.41	3.23
E S	8	5.32	4.46	4.07	3.84	3.69	3.58	3.44	3.28	3.12	2.93
Z	9	5.12	4.26	3.86	3.63	3.48	3.37	3.23	3.07	2.90	2.71
	10	4.96	4.10	3.71	3.48	3.33	3.22	3.07	2.91	2.74	2.54

Values of Disht Tall Drobability

The F Distribution

Table D F Distribution for Values of Right-Tail Probability = 0.05

						dj	n N	umber	of Gr	oups (l	k-1)			
	df_2	1	2	3	4	5	6	8	12	24	-			
Ý	1	161.45	199.50	215.71	224.58	230.16	233.99	238.88	243.91	249.05	254.31			
Z	2	18.51	19.00	19.16	19.25	19.30	19.33	19.37	19.41	19.45	19.50			
ole	3	10.13	9.55	9.28	9.12	9.01	8.94	8.85	8.74	8.64	8.53			
eop	4	7.71	6.94	6.59	6.39	6.26	6.16	6.04	5.91	5.77	5.63			
Ч Ч	5	6.61	5.79	5.41	5.19	5.05	4.95	4.82	4.68	4.53	4.37			
r o	6	5.99	514	4.76	4.53	4.39	4.28	4.15	4.00	3.84	3.67			
he	7 🔺	5.59	4.74	4.35	4.12	3.97	3.87	3.73	3.57	3.41	3.23			
lum	8	5.32	4.46	4.07	3.84	3.69	3.58	3.44	3.28	3.12	2.93			
Z	9	5.12	4.26	3.86	3.63	3.48	3.37	3.23	3.07	2.90	2.71			
	10	4.96	4.10	3.71	3.48	3.33	3.22	3.07	2.91	2.74	2.54			

What is the critical F value for: N = 10k = 3 $df_B = 3-1 = 2$ $df_W = 10-3 = 7$

> ANOVA always uses a one-tailed test formulation, because the F-statistic can only be positive

Sum of Squares Refresher...

X (sample unit)	- μ (sample mean) =	Deviation	Deviation Squared	
8 -	8 =	02	0	
7 -	8 =	-12	1	
5 -	8 =	-3 ²	9	
6 -	8 =	-22	4	"Squares"
10 -	8 =	2 ²	4	Squares
9 -	8 =	12	1	
7 -	8 =	-1 ²	1	
9 -	8 =	12	1	
8 -	8 =	02	0	Sum the "Sauares"
11 -	8 =	3 ²	9	
Σ = 80	x=8	Σ =	Σ = 30	

Sum of Squares Refresher...

Remember, sum of squares (SS) is just another measure of variability.

□ Variance is like an average of the Sum of Squares.

ANOVA Table

This is how an ANOVA table would look if you ran an F-test This is the ratio

This is just VARIANCE!

(I apologize on behalf of the statistics naming committee...)

This is the ratio of variance we are really interested in.

Source of Variability	Sum of Squares	Degrees of Freedom	Mean Square	F Statistic
Group (Between)	SSB Sum of Squares Between	$df_B = k - 1$	$MSB = \frac{SSB}{df_B}$	$F = \frac{MSB}{MSW}$
Error (Within)	<i>SSW</i> Sum of Squares Within	$df_W = N - k$	$MSW = \frac{SSW}{df_W}$	
Total	SST = SSB + SSW	$df_T = df_B + df_W$		

(I will not make you calculate SS by hand.)

Back to ANOVA Studying Example

ANOVA Studying Example

Run an ANOVA to test whether any of the true average scores differs for the three groups, using a significance level of $\alpha = .05$.

You are given the following information: SSB = 799.27SSW = 158.90

Step 1: State the Hypotheses

Step 1:

$$H_0: \mu_{BookOnly} = \mu_{LectureNotes} = \mu_{Book+LectureNotes}$$

 OR
 $H_0: The true mean score is the same$
 $for each group.$

 $\begin{array}{l} H_1: \ \mu_{BookOnly} \neq \mu_{LectureNotes} \neq \mu_{Book+LectureNotes} \\ OR \\ H_1: At \ least \ one \ of \ the \ true \ group \ means \ is \ different. \end{array}$

Step 2: Significant and Statistical Test

Step 2:

$$\alpha = .05$$

Step 3:

$$F = \frac{MSB}{MSW} = \frac{\frac{SSB}{df_B}}{\frac{SSW}{df_W}}$$

Step 4: Find the Critical Value

Step 4:

$$\alpha = .05$$

 $k = 3 \text{ and } N = 30$
 $df_B = 3 - 1 = 2$
 $df_W = 30 - 3 = 27$

 $F_{crit} = 3.35$

ANOVA always uses a onetailed test formulation, because the F-statistic can only be positive

<u>aa</u>	1121	F criti	cal values	(continued)				•			
					E	egrees of fr	eedom in th	e numerato	r		
		p	1	2	3	4	5	6	7	8	9
		.100	3.01	2,62	2.42	2.29	2.20	2.13	2.08	2.04	2.00
1		.050	4.41	3.55	3.16	2,93	2.77	2.66	2.58	2.51	2.46
	18	.025	5,93	4.56	3,95	3.61	3.38	3.22	3.10	3.01	2.93
		.010	6.29	6.01	5.09	4.58	4.25	4.01	3.84	3.71	3.60
		.001	15.38	10.39	8.49	7.46	6.81	6,35	6.02	5,76	5.56
		105	2.00	2.41	2.40	2 27	2 1 8	2.11	2.06	2.02	1 09
		.100	4.39	2,61	2.40	2.27	2.10	2,11	2.00	2.02	2 42
	10	.030	4.30	3,32	3.13	2.90	2.19	2.00	2.05	2.10	2.72
	19	.025	5,92	4.51	5.90	3.30	5,55	2.17	3,03	2.50	2.00
		.010	0.18	5.95	5.01	4.00	4.17	5,94	5.85	5.05	5 30
		.001	15,00	10,10	0.20	1.41	0.02	0.10	5.05	5.57	5.57
		,100	2.97	2.59	2.38	2,25	2.16	2.09	2.04	2.00	1.96
		.050	4.35	3.49	3.10	2,87	2.71	2.60	2.51	2.45	2.39
	20	.025	5.87	4.46	3,86	3.51	3.29	3.13	3.01	2.91	2.84
		.010	8.10	5.85	4.94	4.43	4.10	3.87	3.70	3,56	3.46
		.001	14.82	9.95	8.10	7.10	6.46	6.02	5.69	5,44	5,24
		.100	2.96	2.57	2.36	2.23	2.14	2,08	2.02	1.98	1.95
		.050	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37
	21	.025	5.83	4.42	3.82	3.48	3.25	3.09	2.97	2.87	2.80
1		.010	8.02	5.78	4.87	4.37	4.04	3.81	3.64	3,51	3.40
ato		.001	14.59	9.77	7,94	6.95	6.32	5.88	5.56	5,31	5.11
l ä		.100	2.95	2 56	2.35	2.22	2.13	2.06	2.01	1.97	1.93
ğ		050	4 30	3 44	3.05	2.82	2.66	2 55	2.46	2.40	2.34
l i	22	025	5 79	4 38	3 78	3 44	3 22	3.05	2.93	2.84	2.76
ě		010	7.95	570	4 82	4 31	3 99	3.76	3.59	3.45	3 35
臣		.001	14.38	9.61	7.80	6.81	6.19	5.76	5.44	5.19	4.99
g l		100	2.04				2.11	2.05	1.00	1.05	1.01
l P		,100	2,94	2,55	2.34	2.21	2.11	2.05	1.99	1.95	1.92
l õ		.050	4.28	3,42	3.03	2.80	2.04	2.55	2,44	2.37	2,32
E I	23	.025	5.75	4,35	3.75	5.41	3.18	3.02	2,90	2.01	2.13
۴.		.010	7.88	5.66	4.76	4,26	3.94	3.71	3.54	3.41	3.30
ees		.001	14.20	9.47	7.67	6,70	6.08	5.65	5.33	5.09	4.89
6.		.100	2.93	2.54	2,33	2.19	2.10	2.04	1.98	1.94	1.91
A		.050	4.26	3.40	3.01	2.78	2.62	2,51	2.42	2.36	2.30
ļ	24	.025	5.72	4.32	3.72	3.38	3.15	2.99	2.87	2.78	2.70
1		.010	7.82	5.61	4.72	4.22	3.90	3.67	3.50	3,36	3.26
		.001	14.03	9.34	7.55	6.59	5.98	5,55	5.23	4.99	4.80
		.100	2.92	2.53	2.32	2.18	2.09	2.02	1.97	1.93	1.89
ļ		.050	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28
	25	.025	5.69	4.29	3.69	3.35	3.13	2.97	2.85	2.75	2,68
		.010	7.77	5.57	4.68	4.18	3.85	3.63	3,46	3.32	3.22
		.001	13.88	9.22	7.45	6.49	5.89	5.46	5,15	4,91	4.71
		100	2.01	2 52	2 31	2 17	2.08	2.01	1.96	1.92	1.88
\mathbf{N}		050	1 22	2,32	2.01	2.11	2.50	2.01	2 30	2 32	2 27
	26	025	5.66	4.07	3.67	2 22	3 10	2.94	2.82	2.73	2.65
	20	010	7 72	5.52	1.6A	A 14	2 82	2 50	3 47	3 20	3 18
		.001	13.74	9.12	7.36	6.41	5.80	5.38	5.07	4.83	4.64
	\mathbf{N}	100	2.00		2.20	3.17	2.07	1.00	1.05	1.01	1 07
[\	.100	2.90	0.01	2.30	2.17	2.07	2.00	1.70	1.71	1.0/
[24	.050	4.21	3,55	2.90	2.15	2,31	2.40	2,31	2,31	4.20
	27	.025	5.63	F 10	3.65	5.31	3,08	2.92	2,80	2.71	2.03
		010.	7.68	5.49	4.60	4.11	3.78	3.50	5.39	3.20	3.15
		.001	13.61	9.02	7.27	6,33	5.73	5.51	5.00	4./0	4.57

Step 5: Calculate Test Statistic

\Box Let's fill in what we know...

Source of Variability	Sum of Squares	Degrees of Freedom	Mean Square	F Statistic
Group (Between)	SSB	$df_B = k - 1$	$MSB = \frac{SSB}{df_B}$	$F = \frac{MSB}{MSW}$
Error (Within)	SSW	$df_W = N - k$	$MSW = \frac{SSW}{df_W}$	
Total	SST = SSB + SSW	$df_T = df_B + df_W$		
Source of Variability	Sum of Squares	Degrees of Freedom	Mean Square	F Statistic
Source of Variability Group (Between)	Sum of Squares SSB = 799.27	Degrees of Freedom $df_B = 2$	$\frac{Mean Square}{MSB} = \frac{799.27}{2}$	F Statistic $F = \frac{399.64}{5.89}$
Source of Variability Group (Between) Error (Within)	Sum of Squares SSB = 799.27 SSW = 158.9	Degrees of Freedom $df_B = 2$ $df_W = 27$	Mean Square $MSB = \frac{799.27}{2}$ $MSW = \frac{158.9}{27}$	F Statistic $F = \frac{399.64}{5.89}$

Step 5: Calculate Test Statistic

Source of Variability	Sum of Squares	Degrees of Freedom	Mean Square	F Statistic
Group (Between)	SSB	$df_B = k - 1$	$MSB = \frac{799.27}{2}$	$F = \frac{399.64}{5.89}$
Error (Within)	SSW	$df_W = N - k$	$MSW = \frac{158.9}{27}$	
Total	SST = SSB + SSW	$df_T = df_B + df_W$		

Source of Variability	Sum of Squares	Degrees of Freedom	Mean Square	F Statistic
Group (Between)	<i>SSB</i> = 799.27	$df_B = 2$	<i>MSB</i> = 399.64	F = 67.85
Error (Within)	SSW = 158.9	$df_W = 27$	MSW = 5.89	
Total	SST = 958.17	$df_T = 29$		

Source of Variability?

What do you think we can be determine from this Fstatistic, before we even compare to the critical value, knowing what you know about ratios?

Where is more of the variability coming from?

$$F = \frac{Between \ Group \ Variability}{Within \ Group \ Variability} = 67.85$$

Source of Variability	Sum of Squares	Degrees of Freedom	Mean Square	F Statistic	
Group (Between)	<i>SSB</i> = 799.27	$df_B = 2$	<i>MSB</i> = 399.64	F = 67.85	
Error (Within)	SSW = 158.9	$df_W = 27$	MSW = 5.89		
Total	SST = 958.17	$df_T = 29$			

Step 6: Draw Conclusions

Step 6:

Our
$$F_{stat} = 67.85$$
, and our $F_{crit} = 3.35$
Our F_{stat} is past our F_{crit} , so we reject H_0

We reject H_0 . There is enough evidence to reject the null hypothesis that the true mean score for each of the three groups is the same. Instead, we conclude that the true mean score is different for at least one of the groups.

Significant F-Statistic, Then What?

We conclude that the true mean score is different for at least one of the groups"

Pairwise Comparisons

- Now we will consider each pair and see if there are significantly different from each other
- Various methods to do this, they differ in how conservative (harder to reach significant) or liberal (easier to reach significance) each test is
 - Tukey's HSD
 - Bonferroni

Pairwise Comparisons

□ What can we determine from this output?

* = significant

Multiple Comparisons

Dependent Variable: Test Score Mean 95% Confidence Interval Difference (I-**Upper Bound** J) Std. Error Lower Bound (I) Group Sig. (J) Group -10.00* **Tukey HSD** 1.085 -7.31.000 -12.69Book Lecture -11.70* -9.011.085 .000 -14.39Lecture +Book 10.00^{*} 1.085 7.31 12.69 .000 Lecture Book -1.701.085 -4.39.99 .277 Lecture +Book 11.70^{*} 14.39 1.085 .000 9.01 Lecture +Book Book 1.70 1.085 .277 -.99 4.39 Lecture

Pairwise Comparisons

□ There is a significant different between:

Book vs. Lecture Notes

Dependent Variable:

Book vs. Book + Lecture Notes

Tast Casua

 The difference between Lecture Notes vs. Lecture Notes + Book was NOT significant.

Notice how some 95% Cl

contains zero... These

are not significant.

Dependent	anabie.	lest Score					
			Mean Difference (I–			95% Confide	ence Interval
	(I) Group	(J) Group	J)	Std. Error	Sig.	Lower Bound	Upper Bound
Tukey HSD	Book	Lecture	-10.00*	1.085	.000	-12.69	-7.31
		Lecture +Book	-11.70*	1.085	.000	-14.39	-9.01
	Lecture	Book	10.00*	1.085	.000	7.31	12.69
		Lecture +Book	-1.70	1.085	.277	-4.39	0 .99
	Lecture +Book	Book	11.70 [*]	1.085	.000	9.01	14.39
		Lecture	1.70	1.085	.277	99	0 4.39

Multiple Comparisons

Step 6: Draw Conclusions (Again)

- □ The overall F-test was significant, indicating that at least two of the different types of study material groups were significantly different with the scores they got on an exam (F = 67.8, p < .05).
 - APA: F(2, 27) = 67.8, p < .05)
- The Book Only group had significantly lower mean score than the Lecture Notes and Lecture Notes + Book. There was no difference in the exam scores between the Lecture Notes and Lecture Notes + Book.

APA Notation for ANOVA

F(2, 27) = 67.8, p < .05)

Degree of Freedom Between Degree of Freedom Within

F-statistic (the ratio you calculated)

APA Notation: F(df1, df2) = f-statistic, p < .05)

Television Viewing

New research suggests that watching television, especially medical shows, can result in more concern about personal health. Surveys were administered to 18 college students measuring their personal health concerns on a scale of 0-10. For the following data, students were grouped based on their television viewing habits.

Test whether the true personal health concerns are the same for the three groups, using $\alpha = .05$. You are given: SSB = 36.99 and SSW = 49.

	Television Viewing Habits	
Little to none	Moderate	Substantial
3	5	6
2	7	7
1	3	6
5	4	6
3	8	8
7	6	9
$\bar{X}_{1} = 3.5$	$\bar{X}_2 = 5.5$	$\bar{X}_{3} = 7.0$

Step 1: State the Hypotheses

Step 1:

$$\begin{split} H_0: \ \mu_{Little} &= \mu_{Moderate} = \mu_{Substantial} \\ OR \\ H_0: The true mean level of personal health concerns is the same \\ for each group. \end{split}$$

$$\begin{array}{l} H_0\colon \mu_{Little} \neq \mu_{Moderate} \neq \mu_{Substantial} \\ OR \\ H_1\colon At \ least \ one \ of \ the \ true \ group \ mean \ level \ of \ health \ concerns \\ is \ different. \end{array}$$

Step 2: Significant and Statistical Test

Step 2:

$$\alpha = .05$$

Step 3: ANOVA F-test

$$F = \frac{MSB}{MSW} = \frac{\frac{SSB}{df_B}}{\frac{SSW}{df_W}}$$

Step 4: Find the Critical Value

Step 4:

$$\alpha = .05$$

 $k = 3$ and N = 18'
 $df_B = 3 - 1 = 2$

$$df_W = 18 - 3 = 15$$

 $F_{crit} = 3.68$

F critical values (continued)

					1	Degrees of fi	reedom in tl	ie numerate	or		
		р	1	2	3	4	5	6	7	8	9
		.100	3.46	₹3.11	2,92	2,81	2.73	2.67	2,62	2.59	2,56
		.050	5.32	4.46	4.07	3.84	3.69	3,58	3.50	3.44	3.39
	8	.025	7.57	6.06	5.42	5.05	4.82	4.65	4.53	4.43	4 36
		.010	11/6	8.65	7.59	7.01	6.63	6.37	618	6.03	5.01
		.001	25.41	18.49	15.83	14.39	13.48	12.86	12.40	12.05	11.77
		100	2.26	2.01	191	2.60	141	155	251	2.47	2.11
		.100	3.30	3.01	2.01	2.09	2.01	4.55	2,51	2.41	2.44
	•	.050	5.12	4.26	3.80	3.63	5.48	3.37	3.29	3.23	3.18
	9	.025	7.21	5.71	5.08	4.72	4.48	4.32	4.20	4.10	4.03
		.010	10.56	8.02	6.99	6.42	6.06	5.80	5.61	5.47	5.35
		.001	22.86	16.39	13.90	12.56	11.71	11.13	10.70	10.37	10.11
		.100	3.29	2.92	2.73	2.61	2,52	2.46	2.41	2.38	2.35
		.050	4.96	4.10	3,71	3.48	3,33	3.22	3.14	3.07	3.02
	10	.025	6,94	5.46	4.83	4.47	4.24	4.07	3.95	3.85	3.78
		.010	10.04	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4 94
		.001	21.04	14.91	12.55	11.28	10.48	9.93	9,52	9.20	8.96
		100	2.12	1 94	166	254	2.45	2 20	3.24	2 20	1 17
		.100	3.23	2.00	2.00	2.34	2.40	2,39	2,34	2,30	4.27
		.050	4.84	3.98	3.39	3.30	3.20	3.09	3.01	2,95	2.90
	Ш	.025	6.72	5.26	4.63	4.28	4.04	3.88	3.76	3.66	3.59
or		.010	9.65	7,21	6,22	5,67	5,32	5.07	4.89	4.74	4.63
nat		.001	19.69	13,81	11,56	10.35	9,58	9.05	8.66	8.35	8.12
il.		.100	3.18	2,81	2,61	2,48	2.39	2.33	2.28	2.24	2.21
ă		.050	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80
de	12	.025	6.55	5.10	4.47	4.12	3.89	3.73	3.61	3.51	3.44
þe		.010	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4 39
Ë.		.001	18.64	12.97	10.80	9.63	8.89	8.38	8.00	7.71	7.48
H		.100	3.14	2.76	2.56	2.43	235	2.28	2 23	2.20	2.16
ğ		050	4.67	3.81	3 41	3 18	3.03	2.20	2.23	2.20	2.10
ĕ	13	025	6.41	107	1 25	4.00	3.03	2.50	2.03	2.77	2.71
÷	15	010	0.71	4.70	574	5.00	104	3,00	3.40	3.39	3,31
0		1010	9.07	12.21	10.21	0.07	4.00	4.02	4.44	4.30	4.19
ree		.001	17.82	12.31	10.21	9.07	8.30	7.80	7.49	7.21	6.98
50		.100	3.10	2.73	2.52	2.39	2.31	2.24	2.19	2.15	2.12
А		.050	4.60	3.74	3.34	3.11	2,96	2.85	2.76	2.70	2.65
	14	.025	6.30	4.86	4.24	3.89	3.66	3.50	3.38	3.29	3.21
		.010	8.86	6.51	5.56	5.04	4.69	4.46	4.28	4 14	4 03
		.001	17.14	11.78	9.73	8.62	7.92	7.44	7.08	6.80	6.58
		.100	3 07	2 70	2 49	2 36	2 27	2.21	2.16	2 12	2.00
\mathbf{N}		050	4 54	3.68	3 20	3.06	2.27	2 70	2.10	2,12	2.09
	15	025	6 20	5.00	4 15	2.00	2,70	2.41	2.11	2,04	2.39
	15	010	0.20	6.26	5 43	7.00	3,30	3.41	3.29	3.20	3.12
		.010	16.59	11.34	5.42 9.34	4.69	4,50	4.32	4.14	4.00	5.89 6.26
						0.00	1107		Vi17	0.77	0,20
		.100	3.05	2.67	2.46	2.33	2.24	2.18	2.13	2.09	2.06
		.050	4.49	5.63	3.24	3.01	2.85	2.74	2.66	2,59	2.54
	16	.025	6.12	4.69	4.08	3.73	3.50	3.34	3.22	3.12	3.05
		.010	8.53	6,23	5.29	4.77	4.44	4.20	4.03	3,89	3,78
		.001	16.12	10.97	9.01	7.94	7,27	6.80	6.46	6.19	5.98
		.100	3.03	2,64	2.44	2.31	2,22	2.15	2.10	2.06	2.03
		.050	4.45	3.59	3.20	2.96	2,81	2.70	2,61	2,55	2.49
	17	.025	6.04	4.62	4.01	3.66	3,44	3,28	3.16	3.06	2.98
		.010	8,40	6.11	5.19	4.67	4.34	4.10	3.93	3 79	3 68
									0.00	~	0.00

Step 5: Calculate Test Statistic

Step 5:

Source of Variability	Sum of Squares	Degrees of Freedom Mean Square		F Statistic
Group (Between)	<i>SSB</i> = 36.99	$df_B = 2$	MSB = ?	F = ?
Error (Within)	SSW = 49	$df_W = 15$	MSW = ?	
Total	SST = ?	$df_T = ?$		

Step 5: Calculate Test Statistic

Step 5:

Source of Variability	Sum of Squares	Degrees of Freedom	Mean Square	F Statistic	
Group (Between)	SSB = 36.99	$df_B = 2$	MSB = 18.495	F = 5.66	
Error (Within)	SSW = 49	$df_W = 15$	MSW = 3.267		
Total	SST = 85.99	$df_T = 17$			

Step 6: Draw Conclusions

Step 6:

$$F_{stat} = 5.66$$
$$F_{crit} = 3.68$$

Our F_{stat} is past our F_{crit} , so we reject H_0

APA Notation: F(2, 15) = 5.66, p < .05)

We reject H_0 . There is enough evidence to reject the null hypothesis that the true mean level of personal health concerns for each of the three groups is the same. Instead, we conclude that the true mean level of personal health concerns is different for at least one of the groups. We can proceed to do pairwise comparisons to check which of the groups actually differ from the others.

Up Next

We've spend a lot of time looking at the differences between things... We're going to switch gears and next look at the associations (relationships) between some variables.

Correlation

Bug Bites...

- Mosquitos are an annoying fact of life we must all live with. There are various bug sprays and products out there that claim to protect against bug bites, but which ones work best?
- Let's compare the effectiveness (as quantified by the number of bug bites) of six different bug bite prevention products.
- Natural Oils, Citronelle Candles, DEET Spray,
 Citronelle Spray, Picaridin, and Nothing (Control)

Bug Spray Descriptive Statistics

- Just by looking at the descriptive statistics, which products look like they might be significantly different from the others?
- Which looks like it might be the best?
 - Is there a best?

Descr	iptiv	e st	tatist	ics Ł	oy group)							
group:	Natu	ral	Oils										
	vars	n	mean	sd	median	trimmed	mad	min	max	range	skew	kurtosis	se
count	1	12	14.5	4.72	14	14.4	5.19	7	23	16	0.27	-1.13 1	1.36
spray*	Z	12	1.0	0.00	1	1.0	0.00	1	1	Ø	NaN	NaN (0.00
group:	Citro	onel	lle Ca	ndle									
	vars	n	mean	so	d mediar	n trimmed	d maa	1 mir	n max	range	e ske	w kurtosis	s se
count	1	12	15.33	4.27	7 16.5	5 15.6	5 4.45	5 7	7 21	. 14	4 -0.3	5 -1.04	1.23
spray*	Z	12	Z.00	0.00	ð 2.0) Z.(0.00) 2	2 2	. (ð Na	N NaM	0.00
group:	DEET					4						lu unter a der	
	vars	12	mean	sa	mealan	trimmed	maa	min	max	range	SKEW	KUPTOSIS	se
count	1	12	2.08	1.98	1.5	1.8	1.48	0			1.13	0.52 0	1.5/
spray≁	2	12	5.00	0.00	5.0	5.0	0.00	2	3	0	nan	nan e	0.00
aroun	Ci+n	onel	 110 Sn	rav									
group.	vars	n	mean	sd n	nedian t	rimmed	mad n	in n	nav n	anae	skow k	urtosis	50
count	1	12	4 92	25	5	4 5 ⁴	1 48	2	12	10 '	1 68	2 56 0	72
sprav*	2	12	4.00	0.0	4	4.00	0.00	4	4	 	NaN	NaN 0.	.00
aroup:	Pica	ridi	in										
J	vars	n	mean	sd	median	trimmed	mad	min	max	range	skew	kurtosis	se
count	1	12	3.5	1.73	3	3.5	2.22	1	6	5	0.05	-1.41 0).5
spray*	2	12	5.0	0.00	5	5.0	0.00	5	5	0	NaN	NaN @	0.0
group:	Noth [.]	ing											
	vars	n	mean	so	d mediar	n trimmed	d maa	l mir	n max	range	e skew	kurtosis	se
count	1	12	16.67	6.21	1 15	5 16.5	5 6.67	7 <u>9</u>	26	17	7 0.39	-1.56	1.79
sprav*	2	12	6.00	0.00) e	5 6.0	1 0.00) 6	5 6		NaN	NaN	0.00

R ANOVA Output

- We can see our between group df = 5, so we have 6 groups we are comparing (k-1)
- \Box We have within df = 66, so we have 72 observations, (N-k)
- Our F-value is 34.7 which comes from dividing the Mean Squares Between (533.8) by the Mean Squares Within (15.4).
- Our p-value is very significant.

What is our conclusion? What should we do next?

	Df	Sum Sq N	lean Sq	F value	Pr(>F)				
spray	5	2669	533.8	34.7	<2e-16	***			
Residuals	66	1015	15.4						
Signif. code	es:	0 '***	0.001 0.001	'**' 0.0	01'*'(0.05 ʻ	.' 0.1	ډ ،	1

Significant F-value

- When we have a significant F-value, we know that at least one of the groups differs from the others, but our ANOVA does not tell us which groups...
- We need to conduct a pair-wise comparison like Tukey's HSD.

Which groups differ significantly?

Tukey multiple comparisons of means 95% family-wise confidence level

Fit: aov(formula = count ~ spray, data = bug_spray)

\$spray

	diff	lwr	upr	p adj
Citronelle Candle-Natural Oils	0.8333333	-3.866075	5.532742	0.9951810
DEET-Natural Oils	-12.4166667	-17.116075	-7.717258	0.0000000
Citronelle Spray-Natural Oils	-9.5833333	-14.282742	-4.883925	0.0000014
Picaridin-Natural Oils	-11.0000000	-15.699409	-6.300591	0.0000000
Nothing-Natural Oils	2.1666667	-2.532742	6.866075	0.7542147
DEET-Citronelle Candle	-13.2500000	-17.949409	-8.550591	0.0000000
Citronelle Spray-Citronelle Candle	-10.4166667	-15.116075	-5.717258	0.000002
Picaridin-Citronelle Candle	-11.8333333	-16.532742	-7.133925	0.0000000
Nothing-Citronelle Candle	1.3333333	-3.366075	6.032742	0.9603075
Citronelle Spray-DEET	2.8333333	-1.866075	7.532742	0.4920707
Picaridin-DEET	1.4166667	-3.282742	6.116075	0.9488669
Nothing-DEET	14.5833333	9.883925	19.282742	0.0000000
Picaridin-Citronelle Spray	-1.4166667	-6.116075	3.282742	0.9488669
Nothing-Citronelle Spray	11.7500000	7.050591	16.449409	0.0000000
Nothing-Picaridin	13.1666667	8.467258	17.866075	0.0000000

Which groups differ significantly?

Tukey multiple comparisons of means 95% family-wise confidence level

Fit: aov(formula = count ~ spray, data = bug_spray)

\$spray

	diff	lwr	upr	p adj
Citronelle Candle-Natural Oils	0.8333333	-3.866075	5.532742	0.9951810
DEET-Natural Oils	-12.4166667	-17.116075	-7.717258	0.0000000
Citronelle Spray-Natural Oils	-9.5833333	-14.282742	-4.883925	0.0000014
Picaridin-Natural Oils	-11.0000000	-15.699409	-6.300591	0.0000000
Nothing-Natural Oils	2.1666667	-2.532742	6.866075	0.7542147
DEET-Citronelle Candle	-13.2500000	-17.949409	-8.550591	0.0000000
Citronelle Spray-Citronelle Candle	-10.4166667	-15.116075	-5.717258	0.000002
Picaridin-Citronelle Candle	-11.8333333	-16.532742	-7.133925	0.0000000
Nothing-Citronelle Candle	1.3333333	-3.366075	6.032742	0.9603075
Citronelle Spray-DEET	2.8333333	-1.866075	7.532742	0.4920707
Picaridin-DEET	1.4166667	-3.282742	6.116075	0.9488669
Nothing-DEET	14.5833333	9.883925	19.282742	0.0000000
Picaridin-Citronelle Spray	-1.4166667	-6.116075	3.282742	0.9488669
Nothing-Citronelle Spray	11.7500000	7.050591	16.449409	0.0000000
Nothing-Picaridin	13.1666667	8.467258	17.866075	0.0000000

Which groups differ significantly?

□ The Less Effective Groups:

The Citronelle Candle, Natural Oils, and Control group do not differ significantly from each other.

□ The More Effective Groups:

- The DEET, Picaridin, and Citronelle Spray to significantly not differ from each other.
- The More Effective Groups all differ significantly from the Less Effective Group.
 - If you don't want bug bites, go for DEET, Picaridin, or Citronelle Spray.

These are real data but made up the names.

R Code For ANOVA With Data

library(plyr)

```
bug_spray <- InsectSprays</pre>
bug_spray$spray <- revalue(bug_spray$spray, c("A"= "Natural Oils", "B" = "Citronelle Candle", "C" =</pre>
"DEET", "D"= "Citronelle Spray", "E" = "Picaridin", "F" = "Nothing"))
# Get some descriptive statistics for the different groups
describeBy(bug_spray, group = "spray")
bug_bites_anova <- aov(count ~ spray, data = bug_spray)</pre>
summary(bug_bites_anova)
```

TukeyHSD(bug_bites_anova)

Data Source: R Datasets "InsectSpray"

Beall, G., (1942) The Transformation of data from entomological field experiments, *Biometrika*, **29**, 243–262. ANOVA Tutorial https://bioinformatics-core-shared-training.github.io/linear-models-r/anova.html#section_2:_anova