EDP308: STATISTICAL LITERACY

The University of Texas at Austin, Fall 2020
RAZ: Rebecca A. Zárate, MA

Overview

\square From t to F
\square The F Distribution

- Degrees of Freedom

■ N-k

- $\mathrm{k}-1$
\square Sum of Squares Refresher
\square ANOVA Table Output
\square Hypothesis Testing for ANOVA
\square Pairwise Comparisons
\square ANOVA in R
- Data

From \dagger to F , ANOVA

\square t-tests have t-statistics
\square ANOVA has an F-statistic

- The larger the F-statistic, the more likely you are to reject the null hypothesis
\square The idea behind the hypothesis test is still the same, figure out your cut off score and determine if the statistic you compute is in the critical region
- Critical values are now based on two types of degrees of freedom
\square Degrees of Freedom for Sample Size (Within), N-k
- $\mathrm{N}=$ total sample size
- Degrees of Freedom for Number of Groups (Between), k-1

■ $\mathrm{k}=$ number of groups

Degrees of Freedom

\square Degrees of Freedom for Sample Size, N-k
\square This is the degrees of freedom related to WITHIN, the denominator
$\square \mathrm{n}_{1}+\mathrm{n}_{2}+\mathrm{n}_{3} \ldots \mathrm{n}_{\mathrm{k}}=\mathrm{N}$

- $\mathrm{df}_{\mathrm{w}}=\mathrm{N}$ (total sample size) -k (the number of groups)
\square Degrees of Freedom for Number of Groups, k-1
\square This is the degrees of freedom related to BETWEEN, the numerator
- $\mathrm{df}_{\mathrm{B}}=\mathrm{k}$ (number of groups) -1

The F Distribution

Table D F Distribution for Values of Right-Tail Probability $=0.05$

	$d f_{2}$	$d f_{1}$						Number of Groups (k-1)			
		1	2	3	4	5	6	8	12	24	∞
판	1	161.45	199.50	215.71	224.58	230.16	233.99	238.88	243.91	249.05	254.31
\underline{L}	2	18.51	19.00	19.16	19.25	19.30	19.33	19.37	19.41	19.45	19.50
0	3	10.13	9.55	9.28	9.12	9.01	8.94	8.85	8.74	8.64	8.53
$\stackrel{\ddot{0}}{0}$	4	7.71	6.94	6.59	6.39	6.26	6.16	6.04	5.91	5.77	5.63
ロ	5	6.61	5.79	5.41	5.19	5.05	4.95	4.82	4.68	4.53	4.37
0	6	5.99	5.14	4.76	4.53	4.39	4.28	4.15	4.00	3.84	3.67
-1	7	5.59	4.74	4.35	4.12	3.97	3.87	3.73	3.57	3.41	3.23
E	8	5.32	4.46	4.07	3.84	3.69	3.58	3.44	3.28	3.12	2.93
Z	9	5.12	4.26	3.86	3.63	3.48	3.37	3.23	3.07	2.90	2.71
	10	4.96	4.10	3.71	3.48	3.33	3.22	3.07	2.91	2.74	2.54

In this table:
$d f_{1}$ refers to $d f_{B}$
$d f_{2}$ refers to $d f_{W}$.

To find a critical value for $\alpha=.05$, simply locate the F value for the appropriate degrees of freedom.

What is the critical F value for:

$$
\begin{gathered}
N=10 \\
k=3
\end{gathered}
$$

The F Distribution

What is the critical F value for:
$\mathrm{N}=10$ $\mathrm{k}=3$ $\mathrm{df}_{\mathrm{B}}=3-1=2$ $d f_{w}=10-3=7$

ANOVA always uses a one-tailed test formulation, because the F-statistic can only be positive

Sum of Squares Refresher...

$\begin{aligned} & X \\ & \begin{array}{l} \text { (sample } \\ \text { unit) } \end{array} \\ & \hline \end{aligned}$	$-\mu$ (sample mean) $=$	Deviation	Deviation Squared
8	8 =	0^{2}	
7 -	$8=$	-1^{2}	1
5 -	$8=$	-3^{2}	9
6 -	$8=$	-2^{2}	4
$10-$	$8=$	2^{2}	4
9 -	$8=$	12	1
7	$8=$	-1^{2}	1
9 -	$8=$	12	1
8 -	$8=$	0^{2}	0
11-	$8=$	3^{2}	9
$\Sigma=80$	$\overline{\mathrm{x}}=8$	$\Sigma=$	$\Sigma=30$

Sum of Squares Refresher...

\square Remember, sum of squares (SS) is just another measure of variability.
\square Variance is like an average of the Sum of Squares.

SS

(Sum of Squares)

ANOVA Table

\square This is how an ANOVA table would look if you ran an F-test

This is just VARIANCE!

(I apologize on behalf of the statistics naming committee...)

Source of Variability	Sum of Squares	Degrees of Freedom	Mean Square	F Statistic
Group (Between)	$S S B$ Sum of Squares Between	$d f_{B}=k-1$	$M S B=\frac{S S B}{d f_{B}}$	$F=\frac{M S B}{M S W}$
Error (Within)	$S S W$ Sum of Squares Within	$d f_{W}=N-k$	$M S W=\frac{S S W}{d f_{W}}$	
Total	$S S T=\mathrm{SSB}+\mathrm{SSW}$	$d f_{T}=d f_{B}+d f_{W}$		

(I will not make you calculate SS by hand.)

Back to ANOVA Studying Example

Population 1

Sample 1
(Book Only)

$$
\begin{gathered}
n_{1}=10 \\
\bar{x}_{1}=7.60
\end{gathered}
$$

Population 2

Sample 2
(Lecture Notes)
$n_{2}=10$
$\bar{x}_{2}=17.60$

Population 3

Sample 3
(Lecture Notes and Book)

$$
\begin{gathered}
n_{3}=10 \\
\bar{x}_{3}=19.30
\end{gathered}
$$

ANOVA Studying Example

Run an ANOVA to test whether any of the true average scores differs for the three groups, using a significance level of $\alpha=.05$.

You are given the following information:

$$
\begin{aligned}
& S S B=799.27 \\
& S S W=158.90
\end{aligned}
$$

Step 1: State the Hypotheses

Step 1:

$$
\begin{gathered}
H_{0}: \mu_{\text {BookOnly }}=\mu_{\text {LectureNotes }}=\mu_{\text {Book }+ \text { LectureNotes }} \\
O R
\end{gathered}
$$

H_{0} : The true mean score is the same for each group.

$$
H_{1}: \mu_{\text {BookOnly }} \neq \mu_{\text {LectureNotes }} \neq \mu_{\text {Book }+ \text { LectureNotes }}
$$

$$
O R
$$

H_{1} : At least one of the true group means is different.

Step 2: Significant and Statistical Test

Step 2:

$$
\alpha=.05
$$

Step 3:

$$
F=\frac{M S B}{M S W}=\frac{S S B / d f_{B}}{S S W / d f_{W}}
$$

Step 4: Find the Critical Value

Step 4:

$$
\begin{gathered}
\alpha=.05 \\
k=3 \text { and } \mathrm{N}=30 \\
d f_{B}=3-1=2 \\
d f_{W}=30-3=27 \\
F_{\text {crit }}=3.35
\end{gathered}
$$

ANOVA always uses a onetailed test formulation, because the F-statistic can only be positive

Step 5: Calculate Test Statistic

\square Let's fill in what we know...

Source of Variability	Sum of Squares	Degrees of Freedom	Mean Square	F Statistic
Group (Between)	$S S B$	$d f_{B}=k-1$	$M S B=\frac{S S B}{d f_{B}}$	$F=\frac{M S B}{M S W}$
Error (Within)	$S S W$	$d f_{W}=N-k$	$M S W=\frac{S S W}{d f_{W}}$	
Total	$S S T=$ SSB + SSW	$d f_{T}=d f_{B}+d f_{W}$		
Source of Variability	Sum of Squares	Degrees of Freedom	Mean Square	F Statistic
Group (Between)	$S S B=799.27$	$d f_{B}=2$	$M S B=\frac{799.27}{2}$	$F=\frac{399.64}{5.89}$
Error (Within)	$S S W=158.9$	$d f_{W}=27$	$M S W=\frac{158.9}{27}$	
Total	$S S T=958.17$	$d f_{T}=29$		

Step 5: Calculate Test Statistic

Source of Variability	Sum of Squares	Degrees of Freedom	Mean Square	F Statistic
Group (Between)	$S S B$	$d f_{B}=k-1$	$M S B=\frac{799.27}{2}$	$F=\frac{399.64}{5.89}$
Error (Within)	$S S W$	$d f_{W}=N-k$	$M S W=\frac{158.9}{27}$	
Total	$S S T=\mathrm{SSB}+\mathrm{SSW}$	$d f_{T}=d f_{B}+d f_{W}$		

Source of Variability	Sum of Squares	Degrees of Freedom	Mean Square	F Statistic
Group (Between)	$S S B=799.27$	$d f_{B}=2$	$M S B=399.64$	$F=67.85$
Error (Within)	$S S W=158.9$	$d f_{W}=27$	$M S W=5.89$	
Total	$S S T=958.17$	$d f_{T}=29$		

Source of Variability?

\square What do you think we can be determine from this F statistic, before we even compare to the critical value, knowing what you know about ratios?
\square Where is more of the variability coming from?

$$
F=\frac{\text { Between Group Variability }}{\text { Within Group Variability }}=67.85
$$

Source of Variability	Sum of Squares	Degrees of Freedom	Mean Square	F Statistic
Group (Between)	$S S B=799.27$	$d f_{B}=2$	$M S B=399.64$	$F=67.85$
Error (Within)	$S S W=158.9$	$d f_{W}=27$	$M S W=5.89$	
Total	$S S T=958.17$	$d f_{T}=29$		

Step 6: Draw Conclusions

Step 6:
Our $F_{\text {stat }}=67.85$, and our $F_{\text {crit }}=3.35$
Our $F_{\text {stat }}$ is past our $F_{\text {crit }}$, so we reject H_{0}
We reject H_{0}. There is enough evidence to reject the null hypothesis that the true mean score for each of the three groups is the same. Instead, we conclude that the true mean score is different for at least one of the groups.

Significant F-Statistic, Then What?

\square "We conclude that the true mean score is different for at least one of the groups"

Do we know which group(s)?
Book vs. Lecture Notes?
(Group 1 vs. Group 2)
Book vs. Book + Lecture Notes?
(Group 1 vs. Group 3)
Lecture Notes vs. Book + Lecture Notes?
(Group 2 vs. Group 3)

Pairwise Comparisons

\square Now we will consider each pair and see if there are significantly different from each other
\square Various methods to do this, they differ in how conservative (harder to reach significant) or liberal (easier to reach significance) each test is

- Tukey's HSD
\square Bonferroni

Pairwise Comparisons

\square What can we determine from this output?
$\square^{*}=$ significant

			Multiple C	parison			
Dependent	ariable:	Test Score					
			Mean			95\% Confid	ce Interval
	(I) Group	(J) Group		Std. Error	Sig.	Lower Bound	Upper Bound
Tukey HSD	Book	Lecture	-10.00*	1.085	. 000	-12.69	-7.31
		Lecture +Book	-11.70*	1.085	. 000	-14.39	-9.01
	Lecture	Book	10.00 *	1.085	. 000	7.31	12.69
		Lecture + Book	-1.70	1.085	. 277	-4.39	. 99
	Lecture +Book	Book	11.70 *	1.085	. 000	9.01	14.39
		Lecture	1.70	1.085	. 277	-. 99	4.39

Pairwise Comparisons

\square There is a significant different between:

- Book vs. Lecture Notes
- Book vs. Book + Lecture Notes
\square The difference between Lecture Notes vs. Lecture Notes + Book was NOT significant.

Step 6: Draw Conclusions (Again)

\square The overall F-test was significant, indicating that at least two of the different types of study material groups were significantly different with the scores they got on an exam ($\mathrm{F}=67.8, \mathrm{p}<.05$).
\square APA: $F(2,27)=67.8, p<.05)$
\square The Book Only group had significantly lower mean score than the Lecture Notes and Lecture Notes + Book. There was no difference in the exam scores between the Lecture Notes and Lecture Notes + Book.

APA Notation for ANOVA

$$
\begin{aligned}
& \mathbf{T}(2,27)=67,8,0<05) \\
& \begin{array}{l}
\text { Degree of Freedom } \\
\text { Wreedom } \\
\text { Ween }
\end{array} \quad \text { (the ratio you calculated) }
\end{aligned}
$$

Degree of Freedom Between

APA Notation: F(df1, df2) = f-statistic, $\mathrm{p}<.05$)

Television Viewing

New research suggests that watching television, especially medical shows, can result in more concern about personal health. Surveys were administered to 18 college students measuring their personal health concerns on a scale of $0-10$. For the following data, students were grouped based on their television viewing habits.

Test whether the true personal health concerns are the same for the three groups, using $\alpha=.05$. You are given: $S S B=36.99$ and $S S W=49$.

Television Viewing Habits

Little to none	Moderate	Substantial
3	5	6
2	7	7
1	3	6
5	4	6
3	8	8
7	6	9
$\bar{X}_{1}=3.5$	$\bar{X}_{2}=5.5$	$\bar{X}_{3}=7.0$

Step 1: State the Hypotheses

Step 1:

$$
\begin{gathered}
H_{0}: \mu_{\text {Little }}=\mu_{\text {Moderate }}=\mu_{\text {Substantial }} \\
O R
\end{gathered}
$$

H_{0} :The true mean level of personal health concerns is the same for each group.

$$
\begin{gathered}
H_{0}: \mu_{\text {Little }} \neq \mu_{\text {Moderate }} \neq \mu_{\text {Substantial }} \\
\text { OR }
\end{gathered}
$$

H_{1} : At least one of the true group mean level of health concerns is different.

Step 2: Significant and Statistical Test

Step 2:

$$
\alpha=.05
$$

Step 3: ANOVA F-test

$$
F=\frac{M S B}{M S W}=\frac{S S B / d f_{B}}{S S W / d f_{W}}
$$

4kBIELE Fcritical values (continued)
Step 4: Find the Critical Value

Step 4:

$$
\begin{gathered}
\alpha=.05 \\
k=3 \text { and } \mathrm{N}=18 \\
d f_{B}=3-1=2 \\
d f_{W}=18-3=15
\end{gathered}
$$

Degrees of freedom in the numerator

$$
F_{c r i t}=3.68
$$

Step 5: Calculate Test Statistic

Step 5:

Source of Variability	Sum of Squares	Degrees of Freedom	Mean Square	F Statistic
Group (Between)	$S S B=36.99$	$d f_{B}=2$	$M S B=?$	$F=?$
Error (Within)	$S S W=49$	$d f_{W}=15$	$M S W=?$	
Total	$S S T=?$	$d f_{T}=?$		

Step 5: Calculate Test Statistic

Step 5:

Source of Variability	Sum of Squares	Degrees of Freedom	Mean Square	F Statistic
Group (Between)	$S S B=36.99$	$d f_{B}=2$	$M S B=18.495$	$F=5.66$
Error (Within)	$S S W=49$	$d f_{W}=15$	$M S W=3.267$	
Total	$S S T=85.99$	$d f_{T}=17$		

Step 6: Draw Conclusions

Step 6:

$$
\begin{aligned}
& F_{\text {stat }}=5.66 \\
& F_{\text {crit }}=3.68
\end{aligned}
$$

Our $F_{\text {stat }}$ is past our $F_{c r i t}$, so we reject H_{0}

APA Notation: $\mathrm{F}(2,15)=5.66, \mathrm{p}<.05)$

We reject H_{0}. There is enough evidence to reject the null hypothesis that the true mean level of personal health concerns for each of the three groups is the same. Instead, we conclude that the true mean level of personal health concerns is different for at least one of the groups. We can proceed to do pairwise comparisons to check which of the groups actually differ from the others.
\square We've spend a lot of time looking at the differences between things... We're going to switch gears and next look at the associations (relationships) between some variables.

> Correlation

Bug Bites...

\square Mosquitos are an annoying fact of life we must all live with. There are various bug sprays and products out there that claim to protect against bug bites, but which ones work best?
\square Let's compare the effectiveness (as quantified by the number of bug bites) of six different bug bite prevention products.
\square Natural Oils, Citronelle Candles, DEET Spray, Citronelle Spray, Picaridin, and Nothing (Control)

Bug Spray Descriptive Statistics

\square Just by looking at the descriptive statistics, which products look like they might be significantly different from the others?
\square Which looks like it might be the best?
\square Is there a best?

Descriptive statistics by group
group: Natural Oils
vars n mean sd median trimmed mad min max range skew kurtosis se
count $\quad \begin{array}{llllllllllll}1 & 12 & 14.5 & 4.72 & 14 & 14.4 & 5.19 & 7 & 23 & 16 & 0.27 & -1.13 \\ 1.36\end{array}$
group: Citronelle Candle
count $\quad \begin{array}{llllllllllllllll}1 & 12 & 15.33 & 4.27 & 16.5 & 15.6 & 4.45 & 7 & 21 & 14 & -0.35 & -1.04 & 1.23\end{array}$
2122.000 .00
group: DEET
vars n mean sd median trimmed mad min max range skew kurtosis se
count $\quad \begin{array}{llllllllllll}1 & 12 & 2.08 & 1.98 & 1.5 & 1.8 & 1.48 & 0 & 7 & 7 & 1.13 & 0.52 \\ 0.57\end{array}$
group: Citronelle Spray
vars n mean sd median trimmed mad min max range skew kurtosis se
count $\quad 1124.92 \quad 2.5 \quad 5 \quad 4.51 .48 \quad 2 \quad 12 \quad 101.68 \quad 2.560 .72$

R ANOVA Output

\square We can see our between group df $=5$, so we have 6 groups we are comparing ($k-1$)
\square We have within df =66, so we have 72 observations, (N-k)

- Our F-value is 34.7 which comes from dividing the Mean Squares Between (533.8) by the Mean Squares Within (15.4).
- Our p -value is very significant.

What is our conclusion?

What should we do next?

Significant F-value

\square When we have a significant F-value, we know that at least one of the groups differs from the others, but our ANOVA does not tell us which groups...
\square We need to conduct a pair-wise comparison like Tukey's HSD.

Which groups differ significantly?

Tukey multiple comparisons of means
95\% family-wise confidence level

Fit: $a o v(f o r m u l a=$ count \sim spray, data = bug_spray)
\$spray
Citronelle Candle-Natural Oils
DEET-Natural Oils
Citronelle Spray-Natural Oils
Picaridin-Natural Oils
Nothing-Natural Oils
DEET-Citronelle Candle
diff lwr
$0.8333333-3.866075 \quad 5.5327420 .9951810$
$-12.4166667-17.116075-7.7172580 .0000000$
-9.5833333 -14.282742 -4.883925 0.0000014
-11.0000000 -15.699409 -6.300591 0.0000000
$2.1666667-2.532742 \quad 6.8660750 .7542147$
-13.2500000 -17.949409-8.550591 0.0000000
Citronelle Spray-Citronelle Candle
Picaridin-Citronelle Candle
Nothing-Citronelle Candle
Citronelle Spray-DEET
Picaridin-DEET
Nothing-DEET
Picaridin-Citronelle Spray
Nothing-Citronelle Spray
Nothing-Picaridin
$-10.4166667-15.116075-5.7172580 .0000002$
$-11.8333333-16.532742-7.1339250 .0000000$
$1.3333333-3.366075 \quad 6.0327420 .9603075$
$2.8333333-1.866075 \quad 7.5327420 .4920707$
1.4166667 -3.282742 6.1160750 .9488669
$14.5833333 \quad 9.88392519 .2827420 .0000000$
$\begin{array}{llll}-1.4166667 & -6.116075 & 3.282742 & 0.9488669\end{array}$
$11.7500000 \quad 7.05059116 .4494090 .0000000$
$13.1666667 \quad 8.46725817 .8660750 .0000000$

Which groups differ significantly?

Tukey multiple comparisons of means
95\% family-wise confidence level

Fit: $a o v(f o r m u l a=$ count \sim spray, data = bug_spray)
\$spray
Citronelle Candle-Natural Oils
DEET-Natural Oils
Citronelle Spray-Natural Oils
Picaridin-Natural Oils
Nothing-Natural Oils
DEET-Citronelle Candle
diff
0.8333333
lwr

Citronelle Spray-Citronelle Candle
Picaridin-Citronelle Candle
Nothing-Citronelle Candle
Citronelle Spray-DEET
Picaridin-DEET
Nothing-DEET
Picaridin-Citronelle Spray
Nothing-Citronelle Spray
Nothing-Picaridin

diff	lwr	upr	p adj
0.8333333	-3.866075	5.532742	0.9951810
-12.4166667	-17.116075	-7.717258	0.0000000
-9.5833333	-14.282742	-4.833925	0.0000014
-11.0000000	-15.699409	-6.300591	0.0000000
2.1666667	-2.532742	6.866075	0.7542147
-13.2500000	-17.949409	-8.550591	0.0000000
-10.4166667	-15.116075	-5.717258	0.0000002
-11.8333333	-16.532742	-7.133925	0.0000000
1.3333333	-3.366075	6.032742	0.9603075
2.8333333	-1.866075	7.532742	0.4920707
1.4166667	-3.282742	6.116075	0.9888669
14.5833333	9.883925	19.282742	0.0000000
-1.4166667	-6.116075	3.282742	0.9488669
11.7500000	7.050591	16.449409	0.0000000
13.1666667	8.467258	17.866075	0.0000000

Which groups differ significantly?

\square The Less Effective Groups:
\square The Citronelle Candle, Natural Oils, and Control group do not differ significantly from each other.
\square The More Effective Groups:
\square The DEET, Picaridin, and Citronelle Spray to significantly not differ from each other.
\square The More Effective Groups all differ significantly from the Less Effective Group.

- If you don't want bug bites, go for DEET, Picaridin, or Citronelle Spray.

R Code For ANOVA With Data

```
library(plyr)
# Loading in the dataset
bug_spray <- InsectSprays
# Renaming the groups, you do not have to do this
bug_spray$spray <- revalue(bug_spray$spray, c("A"= "Natural Oils", "B" = "Citronelle Candle", "C" =
"DEET", "D"= "Citronelle Spray", "E" = "Picaridin", "F" = "Nothing"))
# Get some descriptive statistics for the different groups
describeBy(bug_spray, group = "spray")
# This is the simple ANOVA function "aov()"
# The first input is the outcome variable, here it is "count" which is the number of bug bites
# The next input is the grouping variable, here is it the different types of bug "spray"
# Lastly, you tell R the name of the dataset
bug_bites_anova <- aov(count ~ spray, data = bug_spray)
# This gives you all the important summary information,
# this is also where you will see the F-statistic and signficance
summary(bug_bites_anova)
# Since our F-statistic was significant, we can look at the pairwise comparisons using "TuskeyHSD()"
function
TukeyHSD(bug_bites_anova)
```

