EDP308: STATISTICAL LITERACY

The University of Texas at Austin, Fall 2020 RAZ: Rebecca A. Zárate, MA

Overview

- Statistical vs. Practical Significance
- Effect Size: Cohen's d
 - Calculations
 - Small, Median, and Large Effect Sizes
- Cohen's d vs. Statistical Tests
- □ Cohen's d in R

Cohen's d

"The results were significant."

- Again, statisticians are not good at naming things. We think "significant" means:
 - "sufficiently great or important to be worthy of attention"
- This common definition can confuse what "statistical significance" means...
- Results can be statistically significant but only have a tiny, negligible real world effect.
 - Ex. "The results were statistically significant, there was a .02 point increase in IQ when using a special shampoo."
 - .02 when the mean is 100 and the SD is 15 is negligible

"The results were significant."

- Statistical significance DOES NOT equal practical significance
 - Hypothesis tests only tell us the probability that our finding would occur under the null hypothesis
 - With a large enough sample size, lots of negligible differences can be "statistically significant"
- Practical significance are differences that are large enough to mean something in everyday life

Statistical vs. Practical Significance

- □ How different are the two means?
 - Not just are they "statistically significantly different" because as we have seen that can mean very little practically.

How do we quantify practical significance?

Cohen's d, Effect Size

Cohen's d is an effect size used to indicate the <u>standardized</u> difference between two means

sample standard deviation

Cohen's d

- The effect size (d) is in standard units, aka standard deviations, think back to our simple z-distribution
- $\hfill\square$ So, an effect size of d=1.0 says that the means are a whole one standard deviation apart
 - Small = 0.2

Standardized Differences

Freshman 15 Example

There is a difference of half a standard deviation (d = -0.5) between the average college student and UT college students when it comes to weight difference after their first year of college.

Standardized Differences

Standardized Differences

Cohen's d is a standardized difference between two means, while the t-test is using a sampling distribution to test a hypothesis.

Cohen's d and Test Statistics

- Test statistics determine how likely these findings would be if the NULL hypothesis were true
 - This is why it takes the variance AND the sample size into account (i.e. Standard Error)
 - It does not determine the magnitude of the difference
- Cohen's d does determines the magnitude of difference, but cannot determine the likelihood of seeing these findings

Cohen's d and t-statistic Examples

How would you interpret the following? t(24) = +2.45, p < .05, d = .15 t(24) = +2.05, p > .05, d = .15 t(4) = +2.45, p > .05, d = .80t(4) = +2.78, p < .05, d = .80

Cohen's d and t-statistic Examples

□ How would you interpret the following?

□ t(24) = +2.45, p < .05, d = .15

- Statistically significant, but very small effect
 - We can be confident that there is only small difference

- NOT statistically significant, and very small effect
 - We can't be confident...

□ t(4) = +2.45, p > .05, d = .80

- NOT statistically significant, BUT very large effect size
 - This suggests we might be UNDERPOWERED, not a big enough n

- Statistically significant, and a very large effect size
 - We can be confidence that there is a large effect

Cohen's d Interpretation

- In a one sample t-test example, a Cohen's d value of d = +1.0 would suggest that your sample of people (x̄) are 1.0 standard deviations above the average of the population (μ)
 - We may not be familiar with a certain scale and whether or not a difference of 10 points means anything, but standard units are helpful because we are familiar with them and know what they imply
 - If I said the Cohen's d was +1.5, we know there was a large difference between the two means
 - If I said Cohen's d was .06, you'd know there was little practical difference between the means

Overlaps and Shifts

With Cohen's d we know that a d = +1.0 value implies that two distributions (ex. UT vs non-UT students) are shifted away from each other by one full standard deviation.

Up Next...

Ok, now on comparing more than one group to one known mean...

Independent Samples t-tests

Cohen's d in R

