EDP308: STATISTICAL LITERACY

The University of Texas at Austin, Fall 2020 RAZ: Rebecca A. Zárate, MA

Overview

- Statistical Significance
 - Reject or Fail to Reject the Null
- Making Mistakes Type of Errors
 - Type I: False Positive
 - Type II: False Negative
- Sources of Error
 - Issues with Sample Size
 - Issues with Alpha Level
 - Power

Statistical Significance

- When we "Reject the Null Hypothesis," we are saying that the probability of seeing this results (x

), if the Null were true, is low enough (ex. less than 5% chance) that we can reject the idea that we live in the null world. We can conclude there is a statistically significant result. But... There IS still a chance the null might be true. It may be small chance but still a legitimate chance...
- When we "Reject the Null," but the Null is actually true, we've just made a mistake. We've committed an error...

Types of Errors

Type I Type II

Making Mistakes

- Even with our powerful statistical tools, and even with a very small probability (ex. p<.01), we can still be wrong...
 - Could be that 1 in 100
- □ There are two main types of errors:
 - Type I: False Positive
 - Type II: False Negative

False Positives and True Negatives

			Reality (Truth)		
			No Effect (True H ₀)	Effect (True H ₁)	
	Results	Effect (Reject H ₀)	False Positive Type I Error, α	True Positive (Correct)	
	Test R	No Effect (Fail to Reject H ₀)	True Negative (Correct)	False Negative Type II error, β	

Type I Error: False Positive

 \square We could be that 1 in 20 (if $\alpha = .05$), concluding there is some difference when there is not... □ This would be an example of a False Positive 🖌 (Type I Error). Saying there is something there but there really isn't.

3.2

I'm an excited research, anxious to release a new drug... I do some tests and conclude that it does indeed work better than placebo. But in reality the drug has no effect.

		H ₀ is True	H ₀ is False
What kind of error have I	Reject H ₀	Type I Error (α)	Correct Decision
committed?	Fail to Reject H ₀	Correct Decision	Type II Error (β)

I'm an excited research, anxious to release a new drug... I do some tests and conclude that it does indeed work better than placebo. But in reality the drug has no effect.

Reject H₀

Fail to Reject H_0

- I've committed
 - a Type I Error, False Positive.
 - l incorrectly
 - reject the Null
 - when it was in
 - fact true.

H ₀ is True	H ₀ is False
Type I Error	Correct
(α)	Decision
Correct	Type II Error
Decision	(β)

I'm an excited but poor research, and I can only afford a small sample. I do some tests and conclude that my new breakthrough therapy doesn't actually work. But in reality the treatment does have an effect!

		H ₀ is True	H ₀ is False
What kind of error have I	Reject H ₀	Type I Error (α)	Correct Decision
committed?	Fail to Reject H ₀	Correct Decision	Type II Error (β)

- I'm an excited but poor research, and I can only afford a small sample. I do some tests and conclude that my new breakthrough therapy doesn't actually work. But in reality the treatment does have an effect!
- I've committed

 Type II Error,
 False Negative.
 I incorrectly
 FAILED to reject
 the Null when it
 was in fact
 Fail to Reject H₀

H ₀ is True	H ₀ is False
Type I Error	Correct
(α)	Decision
Correct	Type II Error
Decision	(β)

Type I Error, False Positives

- Type I Errors are typically the types of errors we work hard to account for and avoid committing.
 - We'll see this when we look at ANOVA and family-wise (also called experiment-wise) alpha.
- \square The probability of a **Type I Error** is equal to α
 - □ If we choose a lenient cutoff, say $\alpha = .10$ (1 in 10), we have higher chances of committing a Type I Error


Type II Errors – False Negatives

□ Type II Errors in social science research can occur when there is a limited sample size or alpha is strict. In medical testing, Type II Errors can have heavy consequences. One potentially dangerous example of a Type II error is when someone takes a medical test (ex. cancer screening or COVID-19 test) and is told the test is NEGATIVE when in fact they DO actually have the disease. These types of errors can occur because medical tests are not 100% accurate at detected true positives and true negatives.

The Gist of It

 Type I Errors:
 Saying there IS something when there is NOT. Type II Errors: Saying there IS NOT something there when there IS.

A tangible example...

Some Sources of Error

- $\hfill\square$ The probability of a **Type I Error** is equal to α
 - If we choose a lenient cutoff, say $\alpha = .10$ (1 in 10), we have higher chances of committing a Type I Error
- Type II Errors occur when we fail to find a significant effect when in reality there is an effect
 - This is related to Power: The probability of correctly rejecting a null when the null is in fact false
 - If we make cutoff criteria very strict (i.e. if we make α very small, .001), higher chances of **not** finding a significant effect
- □ The probability of a **Type II Error** occurring is high when:
 - When n is small
 - You don't have enough Power
 - $\square \alpha$ is very small
 - You're criteria is very strict

 We will finally dive into all the different types of Hypothesis Testing, starting with...

t-tests