EDP308: STATISTICAL LITERACY

The University of Texas at Austin, Fall 2020
RAZ: Rebecca A. Zárate, MA

Overview

\square The t-Distribution

- Historical Moment: William Sealy Gosset
- Characteristics
\square z vs. \dagger tables
- Probability and Cut-Off Values
\square The t-table
- Level of Significance
- Degrees of Freedom
- One or Two tailed
\square Confidence Intervals with t-distribution
- Critical \dagger and Confidence Intervals in R

Why do we need distributions?

\square Distributions help up determine the probability of observing a sample mean of a certain value.
\square Why does this matter?

- It is not uncommon to observe one person that is very tall, or one buildings high lead content pipes. This may not be ground breaking news or require attention. But what if we saw an entire city or state of very tall people or high lead content? This is much more unlikely and may be worthy of further investigation...
But HOW unlikely does something have to be for us to conclude there IS something going on here?

How Unlikely is Unlikely?

\square A fairly common convention in statistics is to test how likely something is... If the probability of seeing, for example, this high lead content in water is less than 5%, we tend to call this "statistically significant."
\square There are three main levels of significance:
-.10, which is equivalent to a less than 10% chance

- p value $<.10$
- 05 , which is equivalent to a less than 5% chance
- p value $<.05$ Most common.
- 01 , which is equivalent to a less than 1% chance
- p value $<.01$

How Unlikely is "Unlikely"?

\square When we were working with the z-distribution, the z-values associated with those chances are known and we can look them up on a z-table:
$\square 90 \%$ confidence has $z=1.65$
$\square \mathrm{p}$ value $=.10$
$\square 95 \%$ confidence has $z=1.96$
$\square \mathrm{p}$ value $=.05$
$\square 99 \%$ confidence has $z=2.58$
$\square \mathrm{p}$ value $=.01$
But now, we need to be a bit more realistic... rarely do we know σ and sample sizes can be small sometimes. We need a different distribution now...

Historical Moment: William Sealy Gosset
\square William Sealy Gosset (June 13, 1876 - October 16 1937)
\square (AKA "Student")
\square A statistician, chemist, and Head Brewer for
Guinness

Historical Moment: William Sealy Gosset

\square He had to check the sugar content in the malt used to make the beer. It had to be within a certain range because sugar is related to alcohol content... And he didn't want beer batches to vary too much.
\square But... He frequently had to use small sample sizes which has more uncertainty associated with it, and he didn't know the true σ. So, he created a new distribution,
 very similar to the normal distributions.
\square It became know as "Student's t" because Guinness would not allow him to not mention beer, Guinness, or his own last name. So he called himself, "Student". The " t " comes from people using Gosset's "Student test".

Flatter and Wider

\square The t-distribution is flatter and wider than the zdistribution, but gets closer to the z-distribution as sample size increases.

t-distribution Characteristics

\square Slight differences from z but same purposes:

- to standardize samples for comparisons,
\square determine probability of observing certain means,
\square and creating confidence intervals
$\square \mathrm{t}$-distribution handles uncertainty (unknown σ)
\square It also takes into account the sample size, n
\square Similar to the z-distribution when sample size is large
\square Once sample size is large enough, it mimics the z-distribution with no real difference

z vs. t-table

What difference do you notice?
 What similarities?

z-table

TABLE B. 1 The Unit Normal Table*

*Column A lists z-score values. A vertical line drawn through a normal distribution at a z-score location divides the distribution into two sections.
Column B identifies the proportion in the larger section, called the body.
Column C identifies the proportion in the smaller section, called the tail
Column D identifies the proportion between the mean and the z-score.
Note: Because the normal distribution is symmetrical, the proportions for negative z-scores are the same as those for positive z-scores.

(A)	(B) Proportion in Body	(C) Proportion in Tail	(D) Proportion Between Mean and z	(A)			
z		(B) Proportion in Body	(C) Proportion in Tail	(D) Petweportion Betwean and z			
0.00	.5000	.5000	.0000	0.25	.5987	.4013	.0987
0.01	.5040	.4960	.0040	0.26	.6026	.3974	.1026
0.02	.5080	.4920	.0080	0.27	.6064	.3936	.1064
0.03	.5120	.4880	.0120	0.28	.6103	.3897	.1103
0.04	.5160	.4840	.0160	0.29	.6141	.3859	.1141
0.05	.5199	.4801	.0199	0.30	.6179	.3821	.1179
0.06	.5239	.4761	.0239	0.31	.6217	.3783	.1217
0.07	.5279	.4721	.0279	0.32	.6255	.3745	.1255
0.08	.5319	.4681	.0319	0.33	.6293	.3707	.1293
0.09	.5359	.4641	.0359	0.34	.6331	.3669	.1331
0.10	.5398	.4602	.0398	0.35	.6368	.3632	.1368
0.11	.5438	.4562	.0438	0.36	.6406	.3594	.1406
0.12	.5478	.4522	.0478	0.37	.6443	.3557	.1443
0.13	.5517	.4483	.0517	0.38	.6480	.3520	.1480
0.14	.5557	.4443	.0557	0.39	.6517	.3483	.1517
0.15	.5596	.4404	.0596	0.40	.6554	.3446	.1554
0.16	.5636	.4364	.0636	0.41	.6591	.3409	.1591
0.17	.5675	.4325	.0675	0.42	.6628	.3372	.1628
0.18	.5714	.4286	.0714	0.43	.6664	.3336	.1664
0.19	.5753	.4247	.0753	0.44	.6700	.3300	.1700
0.20	.5793	.4207	.0793	0.45	.6736	.3264	.1736
0.21	.5832	.4168	.0832	0.46	.6772	.3228	.1772
0.22	.5871	.4129	.0871	0.47	.6808	.3192	.1808
0.23	.5910	.4090	.0910	0.48	.6844	.3156	.1844
0.24	.5948	.4052	.0948	0.49	.6879	.3121	.1879

t-table

TABLE B. 2 The \boldsymbol{t} Distribution

Table entries are values of t corresponding to proportions in one tail or in two tails combined.

Two tails combined

	Proportion in One Tail					
	0.25	0.10	0.05	0.025	0.01	0.005
	Proportion in Two Tails Combined					
df	0.50	0.20	0.10	0.05	0.02	0.01
1	1.000	3.078	6.314	12.706	31.821	63.657
2	0.816	1.886	2.920	4.303	6.965	9.925
3	0.765	1.638	2.353	3.182	4.541	5.841
4	0.741	1.533	2.132	2.776	3.747	4.604
5	0.727	1.476	2.015	2.571	3.365	4.032
6	0.718	1.440	1.943	2.447	3.143	3.707
7	0.711	1.415	1.895	2.365	2.998	3.499
8	0.706	1.397	1.860	2.306	2.896	3.355
9	0.703	1.383	1.833	2.262	2.821	3.250
10	0.700	1.372	1.812	2.228	2.764	3.169
11	0.697	1.363	1.796	2.201	2.718	3.106
12	0.695	1.356	1.782	2.179	2.681	3.055
13	0.694	1.350	1.771	2.160	2.650	3.012
14	0.692	1.345	1.761	2.145	2.624	2.977
15	0.691	1.341	1.753	2.131	2.602	2.947
16	0.690	1.337	1.746	2.120	2.583	2.921
17	0.689	1.333	1.740	2.110	2.567	2.898
18	0.688	1.330	1.734	2.101	2.552	2.878
19	0.688	1.328	1.729	2.093	2.539	2.861
20	0.687	1.325	1.725	2.086	2.528	2.845
21	0.686	1.323	1.721	2.080	2.518	2.831
22	0.686	1.321	1.717	2.074	2.508	2.819
23	0.685	1.319	1.714	2.069	2.500	2.807
24	0.685	1.318	1.711	2.064	2.492	2.797
25	0.684	1.316	1.708	2.060	2.485	2.787
26	0.684	1.315	1.706	2.056	2.479	2.779
27	0.684	1.314	1.703	2.052	2.473	2.771
28	0.683	1.313	1.701	2.048	2.467	2.763
29	0.683	1.311	1.699	2.045	2.462	2.756
30	0.683	1.310	1.697	2.042	2.457	2.750
40	0.681	1.303	1.684	2.021	2.423	2.704
60	0.679	1.296	1.671	2.000	2.390	2.660
120	0.677	1.289	1.658	1.980	2.358	2.617
∞	0.674	1.282	1.645	1.960	2.326	2.576

Ltd., 1974 (previously published by Oliver and Boyd Ltd., Edinburgh). Copyright ©1963 R. A. Fisher and F. Yates. Adapted and reprinted with permission of Pearson Education Limited.

z vs. t-table

\square Main purpose of z and t distributions is to standardize to determine how probable something is and to create confidence intervals
\square The main difference between the z and t tables

- z tables have:
- Lists of z values to look up corresponding proportions
- Or look up proportion to find the corresponding z-score
- t tables have:
- Degrees of freedom ($\mathrm{n}-1$)
- The level of significance you want
- One or two tail options

.05 in z and $.05(d f=6)$ in \dagger

z-distribution

t-distribution

When df $=6, t_{.025}= \pm 2.447$

This subscript is the level of significance, here it is .05 divided into two sides (.025)

.05 in z and $.05(d f=6)$ in \dagger

z-distribution

$Z_{.025}= \pm 1.96$
t-distribution

When df $=6, t_{.025}= \pm 2.447$

Which will have a wider confidence interval? 1.96 vs. 2.447 ?

$95 \% \mathrm{Cl}$ in z and in $\dagger(\mathrm{df}=6)$

z-distribution

$C I=10 \pm 1.96 * 2.5$
[5.1, 14.9]
t-distribution

$$
\begin{aligned}
C I= & 10 \pm 2.447 * 2.5 \\
& {[3.9,16.1] }
\end{aligned}
$$

All else being equal, because of the extra uncertainty of not knowing σ, the t -distribution will result in a wider confidence interval.

How Do We Know Where It Is?

\square Taking into account sample size and our desired level of confidence, we can look up on a table to determine our critical t-value(s)

The t-table

t-Table: New Things

\square One or Two Tail

- All 5% on one side vs. 2.5% on each side for different type so tests
- Confidence intervals are always two
\square degrees of freedom (df)
- This is how we take sample size into account - $\mathrm{df}=\mathrm{n}-1$
tailed

One tail
(either right or left)

Two tails combined
\square Level of
Significant

- How confident you want to be - . 05 = 95\% confidence

Only the Important Stuff

\square With z-tables, we are looking for an exact proportion, i.e. probability. This is possible because σ is known. But now that σ is unknown and we might have a small sample size, there isn't one chart for every single combination of degrees of freedom and one vs. two tailed tests. There would be way too many charts. Instead, we use charts that focus on the levels of significance we are interested in as researchers. Those levels are typically .10, .05, and . 01.
\square With the t-table, instead of looking up a z-value and getting the proportion, we are going to look for the tvalue that corresponds to the proportion we want, like . 05.

t-table

\square We need to know how far out that
5% (2.5% on either side) is and what t-critical corresponds it to...

Why can't we just use 1.96 anymore?

	0.25	0.10	Prop 0.05	$\begin{aligned} & \text { e Tail } \\ & 0.025 \end{aligned}$	0.01	0.005
$d f$	Proportion in Two Tails Combined					
1	1.000	3.078	6.314	12.706	31.821	63.657
2	0.816	1.886	2.920	4.303	6.965	9.925
3	0.765	1.638	2.353	3.182	4.541	5.841
4	0.741	1.533	2.132	2.776	3.747	4.604
5	0.727	1.476	2.015	2.571	3.365	4.032
6	0.718	1.440	1.943	2.447	3.143	3.707
7	0.711	1.415	1.895	2.365	2.998	3.499
8	0.706	1.397	1.860	2.306	2.896	3.355
9	0.703	1.383	1.833	2.262	2.821	3.250
10	0.700	1.372	1.812	2.228	2.764	3.169
11	0.697	1.363	1.796	2.201	2.718	3.106
12	0.695	1.356	1.782	2.179	2.681	3.055
13	0.694	1.350	1.771	2.160	2.650	3.012
14	0.692	1.345	1.761	2.145	2.624	2.977
15	0.691	1.341	1.753	2.131	2.602	2.947
16	0.690	1.337	1.746	2.120	2.583	2.921
17	0.689	1.333	1.740	2.110	2.567	2.898
18	0.688	1.330	1.734	2.101	2.552	2.878
19	0.688	1.328	1.729	2.093	2.539	2.861
20	0.687	1.325	1.725	2.086	2.528	2.845
21	0.686	1.323	1.721	2.080	2.518	2.831
22	0.686	1.321	1.717	2.074	2.508	2.819
23	0.685	1.319	1.714	2.069	2.500	2.807
24	0.685	1.318	1.711	2.064	2.492	2.797
25	0.684	1.316	1.708	2.060	2.485	2.787
26	0.684	1.315	1.706	2.056	2.479	2.779
27	0.684	1.314	1.703	2.052	2.473	2.771
28	0.683	1.313	1.701	2.048	2.467	2.763
29	0.683	1.311	1.699	2.045	2.462	2.756
30	0.683	1.310	1.697	2.042	2.457	2.750
40	0.681	1.303	1.684	2.021	2.423	2.704
60	0.679	1.296	1.671	2.000	2.390	2.660
120	0.677	1.289	1.658	1.980	2.358	2.617
∞	0.674	1.282	1.645	1.960	2.326	2.576

[^0]
t-table

Why can't we just

 use 1.96 anymore?
Because σ is unknown AND we

 have to take sample size intoaccount...

	0.25	0.10	Prop 0.05	$\begin{aligned} & \text { e Tail } \\ & 0.025 \end{aligned}$	0.01	0.005
$d f$	Proportion in Two Tails Combined					
1	1.000	3.078	6.314	12.706	31.821	63.657
2	0.81	1.006	\bigcirc กาก	1203	6.965	9.925
3	0.7				4.541	5.841
4	0.7	no	N		3.747	4.604
5	0.72				3.365	4.032
6	0.7				3.143	3.707
7	0.7	M	Y		2.998	3.499
8	0.7				2.896	3.355
9	0.71				2.821	3.250
10	0.7				2.764	3.169
11	0.6				2.718	3.106
12	0.6	-			2.681	3.055
13	0.6				2.650	3.012
14	0.6	fic	V		2.624	2.977
15	0.6				2.602	2.947
16	0.6				2.583	2.921
17	0.68		Z		2.567	2.898
18	0.68				2.552	2.878
19	0.68		H		2.539	2.861
20	0.68				2.528	2.845
21	0.68				2.518	2.831
22	0.68				2.508	2.819
23	0.68				2.500	2.807
24	0.685	1.318	1.71	2.064	2.492	2.797
25	0.684	1.316	1.708	2.060	2.485	2.787
26	0.684	1.315	1.706	2.056	2.479	2.779
27	0.684	1.314	1.703	2.052	2.473	2.771
28	0.683	1.313	1.701	2.048	2.467	2.763
29	0.683	1.311	1.699	2.045	2.462	2.756
30	0.683	1.310	1.697	2.042	2.457	2.750
40	0.681	1.303	1.684	2.021	2.423	2.704
60	0.679	1.296	1.671	2.000	2.390	2.660
120	0.677	1.289	1.658	1.980	2.358	2.617
∞	0.674	1.282	1.645	1.960	2.326	2.576

[^1]
Degrees of Freedom $=n-1$

\square Degrees of Freedom are the number of scores allowed to vary when calculating a statistic...

- Suppose you want an average score of $85(\bar{x}=85)$ on all three exams.
- There are no restrictions for the first two exam scores
- Ex. You could get a 75 and a 85 (or a 65 and a 95, etc) for an average of 80 , but that last score has to be a 95 to get that 85 average
\square As soon as you know your first two exam scores, the mean $(\bar{x}=80)$ dictates the score that you need on the third exam (ex. a 95).
- Notice that the first two exam scores are free to vary, but the third score is fixed by the mean (i.e. $n-1$ scores are free)

For now, what is most important is that you know how to calculate the degrees of freedom for a sample so you can look up the correct t-critical.

Quick Practice

- I have a sample size of $\mathrm{n}=10$, what are my df?
\square If I want to construct a $95 \% \mathrm{Cl}$, which is two tailed, what is the critical t-value?

	Proportion in One Tail					
	0.25	0.10	0.05	0.025	0.01	0.005
	Proportion in Two Tails Combined					
$d f$	0.50	0.20	0.10	0.05	0.02	0.01
1	1.000	3.078	6.314	12.706	31.821	63.657
2	0.816	1.886	2.920	4.303	6.965	9.925
3	0.765	1.638	2.353	3.182	4.541	5.841
4	0.741	1.533	2.132	2.776	3.747	4.604
5	0.727	1.476	2.015	2.571	3.365	4.032
6	0.718	1.440	1.943	2.447	3.143	3.707
7	0.711	1.415	1.895	2.365	2.998	3.499
8	0.706	1.397	1.860	2.306	2.896	3.355
9	0.703	1.383	1.833	2.262	2.821	3.250
10	0.700	1.372	1.812	2.228	2.764	3.169
11	0.697	1.363	1.796	2.201	2.718	3.106
12	0.695	1.356	1.782	2.179	2.681	3.055
13	0.694	1.350	1.771	2.160	2.650	3.012
14	0.692	1.345	1.761	2.145	2.624	2.977
15	0.691	1.341	1.753	2.131	2.602	2.947
16	0.690	1.337	1.746	2.120	2.583	2.921
17	0.689	1.333	1.740	2.110	2.567	2.898
18	0.688	1.330	1.734	2.101	2.552	2.878
19	0.688	1.328	1.729	2.093	2.539	2.861
20	0.687	1.325	1.725	2.086	2.528	2.845
21	0.686	1.323	1.721	2.080	2.518	2.831
22	0.686	1.321	1.717	2.074	2.508	2.819
23	0.685	1.319	1.714	2.069	2.500	2.807
24	0.685	1.318	1.711	2.064	2.492	2.797
25	0.684	1.316	1.708	2.060	2.485	2.787
26	0.684	1.315	1.706	2.056	2.479	2.779
27	0.684	1.314	1.703	2.052	2.473	2.771
28	0.683	1.313	1.701	2.048	2.467	2.763
29	0.683	1.311	1.699	2.045	2.462	2.756
30	0.683	1.310	1.697	2.042	2.457	2.750
40	0.681	1.303	1.684	2.021	2.423	2.704
60	0.679	1.296	1.671	2.000	2.390	2.660
120	0.677	1.289	1.658	1.980	2.358	2.617
∞	0.674	1.282	1.645	1.960	2.326	2.576

[^2] Ltd., 1974 (previously published by Oliver and Boyd Ltd., Edinburgh). Copyright ©1963 R. A. Fisher and F. Yates. Adapted and reprinted with permission of Pearson Education Limited.

Quick Practice

\square I have a sample size of $\mathrm{n}=10$, what are my df?

- 10-1 = 9
\square If I want to construct a $95 \% \mathrm{Cl}$, two tailed, what are the critical t-values?
- 2.262

	Proportion in One Tail					
	0.25	0.10	0.05	0.025	0.01	0.005
	Proportion in Two Tailc Cambinad					
$d f$	0.50	0.20	0.10	0.05	0.02	0.01
1	1.000	3.078	6.314	12.706	31.821	63.657
2	0.816	1.886	2.920	4.303	6.965	9.925
3	0.765	1.638	2.353	3.182	4.541	5.841
4	0.741	1.533	2.132	2.776	3.747	4.604
5	0.727	1.476	2.015	2.571	3.365	4.032
6	0.718	1.440	1.943	2.447	3.143	3.707
7	0.711	1.415	1.895	2.365	2.998	3.499
	0.706	1.397	1.860	20	2.896	3.355
9	0.703	1.383	1.833	2.262	2.821	3.250
10	0.700	1.372	1.812	2.228	2.764	3.169
11	0.697	1.363	1.796	2.201	2.718	3.106
12	0.695	1.356	1.782	2.179	2.681	3.055
13	0.694	1.350	1.771	2.160	2.650	3.012
14	0.692	1.345	1.761	2.145	2.624	2.977
15	0.691	1.341	1.753	2.131	2.602	2.947
16	0.690	1.337	1.746	2.120	2.583	2.921
17	0.689	1.333	1.740	2.110	2.567	2.898
18	0.688	1.330	1.734	2.101	2.552	2.878
19	0.688	1.328	1.729	2.093	2.539	2.861
20	0.687	1.325	1.725	2.086	2.528	2.845
21	0.686	1.323	1.721	2.080	2.518	2.831
22	0.686	1.321	1.717	2.074	2.508	2.819
23	0.685	1.319	1.714	2.069	2.500	2.807
24	0.685	1.318	1.711	2.064	2.492	2.797
25	0.684	1.316	1.708	2.060	2.485	2.787
26	0.684	1.315	1.706	2.056	2.479	2.779
27	0.684	1.314	1.703	2.052	2.473	2.771
28	0.683	1.313	1.701	2.048	2.467	2.763
29	0.683	1.311	1.699	2.045	2.462	2.756
30	0.683	1.310	1.697	2.042	2.457	2.750
40	0.681	1.303	1.684	2.021	2.423	2.704
60	0.679	1.296	1.671	2.000	2.390	2.660
120	0.677	1.289	1.658	1.980	2.358	2.617
∞	0.674	1.282	1.645	1.960	2.326	2.576

[^3] Ltd., 1974 (previously published by Oliver and Boyd Ltd., Edinburgh). Copyright ©1963 R. A. Fisher and F. Yates. Adapted and reprinted with permission of Pearson Education Limited.

Quick Practice

\square So the standardized t-value to construct a 95\% Cl for a sample with 10 people when σ is unknown is 2.262.

(either right or left)

	Proportion in One Tail					
	0.25	0.10	0.05	0.025	0.01	0.005
	Proportion in Two Tail Cambinad					
$d f$	0.50	0.20	0.10	0.05	0.02	0.01
1	1.000	3.078	6.314	12.706	31.821	63.657
2	0.816	1.886	2.920	4.303	6.965	9.925
3	0.765	1.638	2.353	3.182	4.541	5.841
4	0.741	1.533	2.132	2.776	3.747	4.604
5	0.727	1.476	2.015	2.571	3.365	4.032
6	0.718	1.440	1.943	2.447	3.143	3.707
7	0.711	1.415	1.895	2.365	2.998	3.499
-	0.706	1.397	1.860	20	2.896	3.355
9	0.703	1.383	1.833	2.262	2.821	3.250
10	0.700	1.372	1.812	2.228	2.764	3.169
11	0.697	1.363	1.796	2.201	2.718	3.106
12	0.695	1.356	1.782	2.179	2.681	3.055
13	0.694	1.350	1.771	2.160	2.650	3.012
14	0.692	1.345	1.761	2.145	2.624	2.977
15	0.691	1.341	1.753	2.131	2.602	2.947
16	0.690	1.337	1.746	2.120	2.583	2.921
17	0.689	1.333	1.740	2.110	2.567	2.898
18	0.688	1.330	1.734	2.101	2.552	2.878
19	0.688	1.328	1.729	2.093	2.539	2.861
20	0.687	1.325	1.725	2.086	2.528	2.845
21	0.686	1.323	1.721	2.080	2.518	2.831
22	0.686	1.321	1.717	2.074	2.508	2.819
23	0.685	1.319	1.714	2.069	2.500	2.807
24	0.685	1.318	1.711	2.064	2.492	2.797
25	0.684	1.316	1.708	2.060	2.485	2.787
26	0.684	1.315	1.706	2.056	2.479	2.779
27	0.684	1.314	1.703	2.052	2.473	2.771
28	0.683	1.313	1.701	2.048	2.467	2.763
29	0.683	1.311	1.699	2.045	2.462	2.756
30	0.683	1.310	1.697	2.042	2.457	2.750
40	0.681	1.303	1.684	2.021	2.423	2.704
60	0.679	1.296	1.671	2.000	2.390	2.660
120	0.677	1.289	1.658	1.980	2.358	2.617
∞	0.674	1.282	1.645	1.960	2.326	2.576

Table III of R. A. Fisher and F. Yates, Statistical Tables for Biological, Agricultural and Medical Research, 6th ed. London: Longman Group Ltd., 1974 (previously published by Oliver and Boyd Ltd., Edinburgh). Copyright ©1963 R. A. Fisher and F. Yates. Adapted and reprinted with permission of Pearson Education Limited.

Confidence Interval, Again

Confidence interval for a mean when σ is unknown:

$$
C I=\bar{x} \pm t_{\text {critical }}^{d f=n-1} * \frac{s}{\sqrt{n}}
$$

What are the main difference when calculating a Cl when σ is unknown?

Confidence Intervals w/tinstead of z

Are confidence interval wider or narrower when σ is unknown?

Does uncertainty make your Cl more or less precise?
Does precision mean wider or narrower?

$$
\begin{gathered}
d f=n-1 \\
95 \% C I=\bar{x} \pm t_{\text {critical }} * \frac{s}{\sqrt{n}} ;
\end{gathered}
$$

Confidence Intervals w/t instead of z

\square What affects the width of our Cl ?

- Margin of Error (MOE) which is determined by:
\square Sample size, standard deviation, and the critical t value
\square We know that using t is always going to result in a wider Cl because it "penalizes" small sample sizes and unknown σ
- For $95 \% \mathrm{Cl}, \mathrm{z}$ is always 1.96 while \dagger depends on sample size but is always equal to (when n is large) or greater than z
- The larger the critical value, the wider your Cl

$$
\begin{gathered}
d f=n-1 \\
95 \% C I=\bar{x} \pm t_{\text {critical }} * \frac{s}{\sqrt{n}}
\end{gathered}
$$

Comparing \dagger to z

\square The standardized t-critical to construct a $95 \% \mathrm{Cl}$ for a sample with 10 people when σ is unknown is ± 2.262.
\square Notice how the "cut offs", the critical t-value, moves further outward, away from the mean. Compare this to the same situation but assume σ is known where the z-value is ± 1.96
\square The larger the critical t-value, the wider your Cl will be, meaning less precise.

Try it.

\square A random sample of 25 college graduates revealed that they worked an average of 6 years at a job before being promoted, with a standard deviation of 1.3 years. Compute and interpret a 99% confidence interval for the mean number of years worked at a job before being promoted.

$$
\begin{gathered}
\bar{x}=6, \quad s=1.3 \\
n=25 \rightarrow \quad d f=24 \\
\text { Level of Significance }=99 \% \text { or } .01
\end{gathered}
$$

Quick Practice

$$
\begin{gathered}
\square \bar{x}=6, \quad s=1.3 \\
\square n=25 \quad \rightarrow \\
d f=24
\end{gathered}
$$

$$
\square t_{.005,24}=2.797
$$

Table entries are values of t corresponding to proportions in one tail or in two tails combined.

(either right or left)

	Proportion in One Tail					
	0.25	0.10	0.05	0.025	0.01	0.005
	Proportion in Two Tails Combined					
$d f$	0.50	0.20	0.10	0.05	0.02	0.01
1	1.000	3.078	6.314	12.706	31.821	63.657
2	0.816	1.886	2.920	4.303	6.965	9.925
3	0.765	1.638	2.353	3.182	4.541	5.841
4	0.741	1.533	2.132	2.776	3.747	4.604
5	0.727	1.476	2.015	2.571	3.365	4.032
6	0.718	1.440	1.943	2.447	3.143	3.707
7	0.711	1.415	1.895	2.365	2.998	3.499
8	0.706	1.397	1.860	2.306	2.896	3.355
9	0.703	1.383	1.833	2.262	2.821	3.250
10	0.700	1.372	1.812	2.228	2.764	3.169
11	0.697	1.363	1.796	2.201	2.718	3.106
12	0.695	1.356	1.782	2.179	2.681	3.055
13	0.694	1.350	1.771	2.160	2.650	3.012
14	0.692	1.345	1.761	2.145	2.624	2.977
15	0.691	1.341	1.753	2.131	2.602	2.947
16	0.690	1.337	1.746	2.120	2.583	2.921
17	0.689	1.333	1.740	2.110	2.567	2.898
18	0.688	1.330	1.734	2.101	2.552	2.878
19	0.688	1.328	1.729	2.093	2.539	2.861
20	0.687	1.325	1.725	2.086	2.528	2.845
21	0.686	1.323	1.721	2.080	2.518	2.831
22	0.686	1.321	1.717	2.074	2.508	2.819
23	0.685	1.319	1.714	2.069	2.500	2.807
24	0.685	1.318	1.711	2.064	2.492	2.797
20	0.084	1.516	1.108	2.060	2.485	2.101
26	0.684	1.315	1.706	2.056	2.479	2.779
27	0.684	1.314	1.703	2.052	2.473	2.771
28	0.683	1.313	1.701	2.048	2.467	2.763
29	0.683	1.311	1.699	2.045	2.462	2.756
30	0.683	1.310	1.697	2.042	2.457	2.750
40	0.681	1.303	1.684	2.021	2.423	2.704
60	0.679	1.296	1.671	2.000	2.390	2.660
120	0.677	1.289	1.658	1.980	2.358	2.617
∞	0.674	1.282	1.645	1.960	2.326	2.576

Table III of R. A. Fisher and F. Yates, Statistical Tables for Biological, Agricultural and Medical Research, 6th ed. London: Longman Group Ltd., 1974 (previously published by Oliver and Boyd Ltd., Edinburgh). Copyright ©1963 R. A. Fisher and F. Yates. Adapted and reprinted with permission of Pearson Education Limited.

Quick Practice

$$
\begin{gathered}
\square \bar{x}=6, \quad s=1.3 \\
\square n=25 \rightarrow \\
d f=24
\end{gathered}
$$

$$
\square t_{.005,24}=2.797
$$

(either right or left)

Two tails
combined

Proportion in One Tail
Why is the critical t so large? Because we want to be 99% confident this time... So we have to widen our confidence interval to be 99\% confident we capture true μ.

19	0.688	1.328	1.729	2.093	2.539	2.861
20	0.687	1.325	1.725	2.086	2.528	2.845
21	0.686	1.323	1.721	2.080	2.518	2.831
22	0.686	1.321	1.717	2.074	2.508	2.819
23	0.685	1.319	1.714	2.069	2.500	2.807
24	0.685	1.318	1.711	2.064	2.492	2.797
20	0.684	1.316	1.108	2.060	2.485	2.701
26	0.684	1.315	1.706	2.056	2.479	2.779
27	0.684	1.314	1.703	2.052	2.473	2.771
28	0.683	1.313	1.701	2.048	2.467	2.763
29	0.683	1.311	1.699	2.045	2.462	2.756
30	0.683	1.310	1.697	2.042	2.457	2.704
40	0.681	1.296	1.684	2.021	2.423	2.660
60	0.679	1.289	1.658	2.000	2.390	2.617
120	0.677		1.645	1.980	2.358	2.576
∞	0.674					

[^4]
Try it.

Information:

$$
\begin{gathered}
\bar{x}=6, \quad s=1.3 \\
n=25 \rightarrow \quad d f=24 \\
t_{.005,24}=2.797
\end{gathered}
$$

Computing the $99 \% \mathrm{Cl}$:

$$
\begin{gathered}
99 \% C I=\bar{x} \pm t_{.005} * \frac{s}{\sqrt{n}} \\
99 \% C I=6 \pm 2.797 * \frac{1.3}{\sqrt{25}} \\
99 \% C I=6 \pm 2.797 * .26 \\
99 \% C I=6 \pm .727 \\
99 \% C I=[5.27,6.73]
\end{gathered}
$$

How would you interpret this
Confidence Interval,
what is it saying?

Interpretation

\square A random sample of 25 college graduates revealed that they worked an average of 6 years at a job before being promoted, with a standard deviation of 1.3 years. Compute and interpret a 99% confidence interval for the mean number of years worked at a job before being promoted.

- "If we take repeated samples of size 25 and compute a 99% confidence interval each time, approximately 99% of the intervals would contain the true mean number of years worked at a job before being promoted."
- The average number of years it takes to get promoted is somewhere between 5.27 year and 6.73 years."
- lout of 100 times we'll get a confidence interval that is too high or too low

Translating Numbers

$$
99 \% C I=[5.27,6.73]
$$

That 1 in 100 Miss

1 in 100 times you will get an average that is out here
P $(\dagger<-2.792)=.005,0.5 \%$
Example Underestimate:

$$
\bar{x}=4.3
$$

Standard Scale: t -value $=-2.792$ (Lower Bound)

Original Scale: Lower Bound $=5.27$
(Original Scale)

$$
\bar{x}=6
$$

(Original Scale Mean)
$\mathrm{P}(\dagger>2.792)=.005,0.5 \%$
Example Overestimate $\bar{x}=7.2$

$$
t=-6.54
$$

$t=4.61$
0.5\%
(.005)
(Upper Bound)
(Standardized Mean)

Upper Bound $=6.73$
(Original Scale)

Which one?

- If I ask you to calculate a Confidence Interval, how do you know which method, which table, to use?
\square Hints:
\square Is this a sample within an KNOWN σ ?
■ If you see Greek, σ, you know you can use the z-distribution
■ Is this a sample with UNKNOWN σ ?
- Do you see an "s" or " σ "?
- If you see "s" or "unknown variance", you will use the t-distribution

Why are we doing this...?

\square So far, we've been calculating confidence intervals for statistic of interest like the mean

- Point estimates aren't actually that precise... To be more confident, we must be more humble and give a range (confidence interval) for our estimates
- And we have to acknowledge our short comings in regards to sample size (i.e. df, using \dagger instead of z)
■ Getting boring, I know... But...
\square This is all working up to being able to test bigger, more interesting ideas...
\square Up next...

Up Next...

Hypothesis Testing

This is what we're really working towards!

Critical \dagger and Confidence Intervals in R

Using R to Look Up Critical T

```
###################################
##### Critical t-values ##########
##################################
# You can look up the critical t value using the "qt()" function in R
# Gives the critical values based on the confidence level you want and df
#p = probabilities, i.e. the confidence level you want, ex. 95% p =c(.025, .975)
# 95% Confidence Interval is associated with 0.025 and . 975 (.975 -.025 = .95)
qt(p = c(.025, .975), df = )
# 99% Confidence Interval is associated with 0.005 and 0.995 (0.995 -.005 = .99)
qt(p = c(.005, .995), df = )
# Example with n = 10
n <- 10
df <- n-1
# Critical t-value associated with 95% Confidence
qt(p = c(.025, .975), df = df) #critical t is 2.26
```


Using R to Create CI, Unknown o

```
###################################################
## Confidence Intervals for Unknown Sigma ###
##############################################################
########## Promotion Example ####################
#################################################################
average <- 6
sd <- 1.3
n <- 25
df <- n -1
# Get the critical t value associated with a certain level of confidence based on df
* 99% Confidence Interval is associated with 0.005 and 0.995 (0.995 -.005 = .99)
critical_t_99 <- qt(p = c(.005, .995), df = df)
# Calculate the Margin of Error
* This will be two numbers, the +MOE and the -MOE
moe <- critical_t_99 * sd/sqrt(n)
# You only have to add the MOE to the average to get back the upper and lower bound
confidence_interval <- average + moe
```


[^0]: Table III of R. A. Fisher and F. Yates, Statistical Tables for Biological, Agricultural and Medical Research, 6th ed. London: Longman Group Ltd., 1974 (previously published by Oliver and Boyd Ltd., Edinburgh). Copyright ©1963 R. A. Fisher and F. Yates. Adapted and reprinted with permission of Pearson Education Limited.

[^1]: Table III of R. A. Fisher and F. Yates, Statistical Tables for Biological, Agricultural and Medical Research, 6th ed. London: Longman Group Ltd., 1974 (previously published by Oliver and Boyd Ltd., Edinburgh). Copyright ©1963 R. A. Fisher and F. Yates. Adapted and reprinted with permission of Pearson Education Limited.

[^2]: Table III of R. A. Fisher and F. Yates, Statistical Tables for Biological, Agricultural and Medical Research, 6th ed. London: Longman Group

[^3]: Table III of R. A. Fisher and F. Yates, Statistical Tables for Biological, Agricultural and Medical Research, 6th ed. London: Longman Group

[^4]: Table III of R. A. Fisher and F. Yates, Statistical Tables for Biological, Agricultural and Medical Research, 6th ed. London: Longman Group Ltd., 1974 (previously published by Oliver and Boyd Ltd., Edinburgh). Copyright ©1963 R. A. Fisher and F. Yates. Adapted and reprinted with permission of Pearson Education Limited.

