EDP308: STATISTICAL LITERACY

The University of Texas at Austin, Fall 2020
RAZ: Rebecca A. Zárate, MA

Overview

\square Calculating a Confidence Interval

- Point Estimate
- Level of Confidence (z-critical)
\square Standard Error
- Margin of Error
\square Factors that Influence a Confidence Interval
\square Sample Size
- Variance
- Level of Desired Confidence
\square Confidence Intervals in R

Confidence Intervals

\square Why do we calculate confidence intervals?
\square Rarely is a single point estimate (\bar{x}) the exact parameter value we are looking for (μ)

- More likely that it is a little off, maybe a little too high or a little too low
\square To increase the chances we capture the truth (μ), we put a little wiggle room, a little cushion around our point estimate
■ Ex. $\bar{x}=65^{\prime \prime}$ vs. $95 \% \mathrm{Cl}\left[64.5^{\prime \prime}, 66.5^{\prime \prime}\right]$

Two Ways to Fish for Truth

Calculations for Confidence Interval

Calculations for Confidence Interval

Margin of Error:
The amount of error based on SE and a desired level of confidence in the original number scale

CI $=$ Point Estimate $\pm z_{\text {critical }} *$ Standard Error

Point Estimate:
Statistic (ex. sample mean value) in the original number scale
z-value:
The level of confidence I want (ex. 95\%, $z=1.96$) in its corresponding z-score

Standard Error (SE):
Standard deviation of the sampling distribution

Try it.

\square I gave out a quiz to the stats literacy course. The standard deviation for the entire class was $\sigma=8$. Now, we take a sample, $\mathrm{n}=9$, from our stats literacy population and calculate a mean, $\bar{x}=81$. Calculate a 95% confidence internal for this sample statistic.
$\bar{x}=81$
$\sigma=8$
$\mathrm{n}=9$
$\sigma_{\bar{x}}(\mathrm{SE})=$
$\mathrm{MOE}=$
$\mathrm{CI}=$

Find the lower and higher values that true μ might be
\square I gave out a quiz to the stats literacy course. The standard deviation for the entire class was $\sigma=8$. Now, we take a sample, $n=9$, from our stats literacy population and calculate a mean, $\bar{x}=81$. Calculate a 95% confidence internal for this sample statistic.
$\bar{x}=81$
$\sigma=8$
$\mathrm{n}=9$
$\sigma_{\bar{x}}(\mathrm{SE})=2.67$ $\mathrm{MOE}=$
$\mathrm{Cl}=$

Standard Error ($\sigma_{\bar{x}}$)
This is like the standard deviation of the sampling distribution.
\square I gave out a quiz to the stats literacy course. The standard deviation for the entire class was $\sigma=8$. Now, we take a sample, $\mathrm{n}=9$, from our stats literacy population and calculate a mean, $\bar{x}=81$. Calculate a 95% confidence internal for this sample statistic.

$$
\begin{array}{lc}
\bar{x}=81 & z_{\text {critical }} * \sigma_{\bar{x}}=\text { Margin of Error } \\
\sigma=8 & 1.96 * 2.67=5.23 \\
\mathrm{n}=9 & \\
\sigma_{\bar{x}}(\mathrm{SE})=2.67 & \\
\text { MOE }=5.23 & \\
\mathrm{CI}= & \\
\text { For } 95 \% \text { confidence, we need az critical of } 1.96
\end{array}
$$

\square I gave out a quiz to the stats literacy course. The standard deviation for the entire class was $\sigma=8$. Now, we take a sample, $\mathrm{n}=9$, from our stats literacy population and calculate a mean, $\bar{x}=81$. Calculate a 95% confidence internal for this sample statistic.

$$
\begin{aligned}
& \bar{x}=81 \\
& \sigma=8 \\
& \mathrm{n}=9 \\
& \sigma_{\bar{x}}(\mathrm{SE})=2.67 \\
& \mathrm{MOE}=5.23 \\
& \mathrm{CI}=[75.77,86.23]
\end{aligned}
$$

$$
\begin{aligned}
& {[75.77,86.23]=81 \pm 5.23} \\
& C I=\text { Point Estimate } \pm \text { Margin of Error }
\end{aligned}
$$

Find the lower and higher values that true μ might be

$$
C I=\text { Point Estimate } \pm z_{\text {critical }} * \text { Standard Error }
$$

Now I reveal that the true mean is 85

Did we capture the truth in our Cl ?

Try it.

$$
C I=\text { Point Estimate } \pm z_{\text {critical }} * \text { Standard Error }
$$

Did our confidence interval contain the true population parameter μ ?

$\mu \underset{\text { Truth }}{=} 85$
[75.77, 86.23]
Our Estimate

Yes, 85 is in our CI! Hooray!

95\% CI [75.77, 86.23]

\square How do we interpret this confidence interval?

- If we repeated the sample again and again, 95 out of 100 times, the true μ will be captured in our confidence interval.

\square Said another way, we are 95% confident the true μ value is between [75.77, 86.23].

Try it.

- You find a research article that reports a 95\% confidence interval for the number of hours college students sleep based on a sample of 9 students with a known σ. They reported a $95 \% \mathrm{Cl}$ of $[3.5,10.5]$
\square What is z ?
- What is the point estimate?
- What is the Margin of Error (MOE)?
\square What is the standard error (SE)?
- How would you interpret this Cl ?

Try it.

\square You find a research article that reports a 95\% confidence interval for the number of hours college students sleep based on a sample of 9 students.
They reported a $95 \% \mathrm{Cl}$ of $[3.5,10.5$]
\square What is z ?
\square Because σ is known, we use the unit normal z-table and we see the critical z value associated with 95% confidence is 1.96

$$
z=1.96
$$

\square You find a research article that reports a 95% confidence interval for the number of hours college students sleep based on a sample of 9 students. They reported a $95 \% \mathrm{Cl}$ of $[3.5,10.5]$

- What is z ?

■ $z=1.96$

- What is the point estimate?
- Looking for the middle of the Cl

Lower Bound Upper Bound

$$
\frac{3.5+10.5}{2}
$$

Point Estimate, $\bar{x}=7$

CI $=$ Point Estimate $\pm z_{\text {critical }} *$ Standard Error

\square You find a research article that reports a 95% confidence interval for the number of hours college students sleep based on a sample of 9 students. They reported a $95 \% \mathrm{Cl}$ of $[3.5,10.5$]

- What is z ?

■ $z=1.96$

- What is the point estimate?
- $\bar{x}=7$

$$
\begin{aligned}
& \bar{x}-\text { Lower Bound }=\text { MOE } \\
& \text { Upper Bound }-\bar{x}=\text { MOE }
\end{aligned}
$$

- What is the Margin of Error (MOE)?
- Solve either equation, both give you MOE

\square You find a research article that reports a 95\% confidence interval for the number of hours college students sleep based on a sample of 9 students. They reported a $95 \% \mathrm{Cl}$ of $[3.5,10.5$]
\square What is z ?
$\square z=1.96$

$$
\underset{\text { Rearrange }}{M O E=z} * \sigma_{\bar{x}}
$$

\square What is the point estimate?
$\square \bar{x}=7$
\square What is the Margin of Error (MOE)?
$\square M O E=3.5$
\square What is the standard error (SE)?

- $\sigma_{\bar{x}}=1.79$

MOE
$\bar{Z}=\sigma_{\bar{x}}$
3.5
$\frac{3.5}{1.96}=1.79$
\square You find a research article that reports a 95\% confidence interval for the number of hours college students sleep based on a sample of 9 students. They reported a $95 \% \mathrm{Cl}$ of [3.5, 10.5]

- What is z ?
- $z=1.96$
- What is the point estimate?
- $\bar{x}=7$
\square What is the Margin of Error (MOE)?

How would you interpret this Cl ?

- $M O E=3.5$
- What is the standard error (SE)?
- $\sigma_{\bar{x}}=1.79$

$$
[3.5,10.5]=7 \pm 1.96 * 1.79
$$

\square You find a research article that reports a 95\% confidence interval for the number of hours college students sleep based on a sample of 9 students. They reported a $95 \% \mathrm{Cl}$ of [3.5, 10.5]
\square How would you interpret this Cl ?

- "If we take repeated samples of $n=9$ and compute a 95% confidence interval each time, approximately 95% of the intervals would contain the true number of hours college students sleep.
- "We are 95% confident that the true number of hours college students sleep is between 3.5 and 10.5 hours."

Factors that Influence Cl

$$
\left.C I=\bar{x} \pm Z * \frac{\sigma}{\sqrt{n}}\right]=\underbrace{\mathrm{SE}}_{\mathrm{MOE}}
$$

Based on the equation above, what factors influence how wide or narrow

$$
\text { your } \mathrm{Cl} \text { is? }
$$

Factors that Influence Cl

What influences how

$$
C I=\bar{x} \pm \underbrace{z * \frac{\sigma}{\sqrt{n}}}_{\text {MOE }}]=\mathrm{SE}
$$

Narrower
Confidence Interval

Point Estimate
Upper Bound

Lower Bound

Factors that Influence Cl

The Margin of Error is what widens or narrows your Cl , but what affects your MOE?

$$
\left.C I=\bar{x} \pm z * \frac{\sigma}{\sqrt{n}}\right]=\mathrm{SE}
$$

Factors that Influence Cl

\square The Margin of Error is affected by:
\square Sample size (n)
\square The variability in the POPULATION (σ)
-The desired level of confidence (ex. 95\%)
-The z-critical value (ex. 1.96)

$$
\left.C I=\bar{x} \pm Z * \frac{\sigma}{\sqrt{n}}\right]=\underbrace{Z \mathrm{SE}}_{\mathrm{MEE}}
$$

Sample Size (n)

\square As sample size increases:
\square What happens to the standard error?
\square What happens to the confidence interval (wider or narrower)?
\square What happens to the MOE?

$$
C I=\bar{x} \pm Z * \underbrace{\sqrt{\sqrt{n}}}_{\mathrm{MOE}})=\mathrm{SE}
$$

Sample Size (n) $\left.C I=\bar{x} \pm z * \frac{\sigma}{\sqrt{n}}\right\}_{\mathrm{sE}}$

\square As sample size (n) increases
\square The larger the sample size, the smaller the standard error
\square MOE decreases as n increase
\square The more narrow your confidence interval

Height Example With Different N's

\square Are you more likely to miss the true μ with a small sample size or a large sample size?
\square You are much more likely to be "off" if you have a small sample size... So to make sure you "catch the truth" you need to make your more or less range (the confidence interval) wider with small sample sizes...
$\square 95 \% \mathrm{Cl}$ with sample size of 36 [$\left.65^{\prime \prime}, 67^{\prime \prime}\right]$ vs.
$\square 95 \% \mathrm{Cl}$ with sample size of 4, [63", 69']
\square Notice how the interval gets WIDER with a smaller sample size... There's more uncertainty with small sample sizes.

Variability (σ)

\square As population variability (standard deviation) increases:
\square What happens to the standard error?
-What happens to the confidence interval
(wider or narrower)?
\square What happens to the MOE?

$$
\left.C I=\bar{x} \pm Z * \frac{\sigma}{\sqrt{n}}\right]_{\mathrm{SE}}
$$

MOE

Variability (σ)

$$
\left.C I=\bar{x} \pm z * \frac{\sigma}{\sqrt{n}}\right]
$$

\square As the variability in the POPULATION (σ) increases:
\square The standard error increase
\square MOE increase as variability increases
\square The confidence interval widens

Variability (σ)

\square As population variability (standard deviation) increases:
\square What happens to the standard error?
-What happens to the confidence interval
(wider or narrower)?
\square What happens to the MOE?

$$
\left.C I=\bar{x} \pm Z * \frac{\sigma}{\sqrt{n}}\right]_{\mathrm{SE}}
$$

MOE

Level of Confidence ($Z_{\text {critical }}$)

\square If you increase your desired level of confidence (ex. from 95\% to 99\%):
\square What happens to the standard error?
\square What happens to the confidence interval
(wider or narrower)?
\square What happens to the MOE?

$$
\left.C I=\bar{x} \pm \neq \frac{\sigma}{\sqrt{n}}\right]=\underbrace{2 \mathrm{SE}}_{\mathrm{MOE}}
$$

90% confidence has $z=1.65$
95% confidence has $z=1.96$
99% confidence has $z=2.58$

Level of Confidence ($z_{\text {critical }}$)

\square If you increase your desired level of confidence (ex. from 95% to 99%):
\square The standard error is not affected

- The margin of error increases with higher levels of confidence
\square The confidence interval widens as you increase your desired level of confidence

As $Z_{\text {critical }}$ goes up... ...this stay the same, and... ...these go up.

Precision vs. Confidence

\square The more precise, the less confidence
\square The more confident, the less precise

- I am 99% confident that the average age of this class is 19 or somewhere between

■ z = 2.58, Cl: [17, 21]

- How precise is this estimate?
- I am 95% confident that the average age of this class is 19 or somewhere between
$\square z=1.96, \mathrm{Cl}:[17.5,20.5]$
- How precise is this estimate?

■ I am 80% confident that the average age of this class is 19 or somewhere between
$\square z=1.28, C l:[18,20]$
80\% Confident

- How precise is this estimate?
*Made up data and intervals for example.

Confidence Intervals

\square Gives us a range of what the truth (μ) might be
\square Help increase our chance of catching the truth
\square In case our initial point estimate (\bar{x}) is off
■ Which is usually is...
\square Later, they will help us with inferential statistics...

Reality Check

- If we are trying to calculate some estimates about something unknown, how likely is it that we will know a populations σ (standard deviation)?
- Not very likely...

■ So we can't use the normal z-distribution anymore...

But we do have another option...

\square We get a bit more realistic and start using a different distribution where we don't need to know the standard deviation (σ) for the population
\square Now we will start using...

The t-distribution

Confidence Intervals in R

\square Calculating a confidence interval when σ is known.

- I gave out a quiz to the stats literacy course. The standard deviation for the entire class was $\sigma=8$. Now, we take a sample, $\mathrm{n}=9$, from our stats literacy population and calculate a mean, $\bar{x}=81$. Calculate a 95% confidence internal for this sample statistic.

```
########################################################
### Confidence Intervals for Known Sigma ###
########################################################
average <- }8
sd <- 8
n<- 9
# Critical values depends on level of confidence
# The most common are 95% and 99%, choose the appropriate one
critical_z_95 <- 1.96 #for 95% CI
critical_z_99 <- 2.58 #for 99% CI
# Calculate the Margin of Error
moe <- critical_z_95 * sd/sqrt(n)
* Subtract the Margin of Error to the mean to get the lower bound
# Add the Margin of Error to the mean to get the upper bound
lower_bound <- average - moe
upper_bound <- average + moe
```

