EDP308: STATISTICAL LITERACY

The University of Texas at Austin, Fall 2020
RAZ: Rebecca A. Zárate, MA

Overview

\square The Normal Distribution

- AKA The Bell Curve or Gaussian Distribution
- Historical Moment: Carl Gauss
- Historical Moment: Maria-Sophia Germain
\square Standardizing the Numbers
- Z-Scores
\square The 68\%, 95\%, 99\% Rule
\square Z-scores, Percentiles, and Probability
\square Looking up on the Unit Normal Table for Z-scores
\square Why Standardize?
\square Z-scores in R

The Normal Distribution

The Normal Distribution

Also called the "Gaussian Curve"

Historical Moment: Carl Gauss

\square Johann Carl Friedrich Gauss (April 30, 1777 - February 23, 1855)
\square German mathematician and physicist born to poor, illiterate working class parents

- They didn't record is date of birth...
\square A teacher once told young Gauss to add all the numbers from 1 to 100, assuming it would take him a while. He solved it quickly by adding pairs...
- $1+100=101,2+99=101 \ldots$ You have 50 pairs of 101, so $50 \times 101=5050$
\square His life was dedicated to learning and its process. He once stated, "It is not knowledge, but the act of learning, not possession but the act of getting there, which grants the greatest enjoyment."

Historical Moment: Maria-Sophia Germain

\square Maria-Sophia Germain (April 1, 1776 - June 27, 1831)
\square "Auguste Antoine Le Blanc" is the pseudonym Germain used while corresponding to her mathematician contemporaries.
\square Taught herself Latin, mathematics, and physics in a time when women rarely obtained an education.
\square Gauss was an informal mentor and correspondent.

The Normal Distribution

\square The Normal Distribution (or Bell Curve) is a graphical representation of one variable's probability distribution.
\square What is the probability a woman is $4^{\prime} 11$ (59 inches)?
\square Or said another way, Height of Females what percent of the female population is 4'11?

Remember, proportions (which can be interpreted as probabilities) are just percentages in decimal form and range from $0-1$ instead of $1 \%-100 \%$.

The Normal Distribution

- What is the probability a woman is $4^{\prime} 11$ (59 inches)?
\square Or said another way, what percent of the female population is 4'11?
If we look at the proportion on the Y -axis that corresponds to 59 inches (4 ' 11), we see the proportion is about .03, or 3%. About 3% of the female population is 4 ' 11 . The probability of any given woman being 4' 11 is . 03

Height of Females

Probability and Distribution

\square Why do we care?
\square Statistics is fraught with uncertainty... Due to sampling error, measurement error, and just the nature of sampling a subset

- In statistics, we don't "prove" things, we can only really provide evidence for certain things happening or not happening... the likelihood of things...
- How likely is it we see a woman who is 4'11 or 6'2?
- How likely is it Flint, MI water is not contaminated with lead?
- How likely is it UT-Austin will be having in person classes?

■ How likely is it you will catch COVID-19?
\square How likely is it you will make an A in this class?

- Things like the normal distribution help us quantify some of that uncertainty.

Standardizing the Numbers

Translations

\square Here is a lovely normal distribution depicting women's heights, but what if we want to see the distribution of some other variable? Or what if I don't really care about your actual height, but rather I want to know how tall you are relative to others of the same sex? How do we reduce it down or "translate it" to just the important core bits?

Ztandardizing with Z scale! ${ }_{\text {stienderdizing }}$

\square We can take any scale and transform it into simplified, standard scale... the Z-scale.
\square A z-score tells you have many standard deviations a person's score is away from the mean.
\square The Z-scale and the Z-scores associated with it allow us to make comparison across different scales, test, and situations.

The Z-scale

\square The Z-scale is a scale that has a mean of zero, and a standard deviation of 1
\square This is very useful to us because we can take any normally distributed variable (ex. height, intelligence, even measurement errors!)

Different Languages, Same Message

\square There is a lot going on with this curve... Lots of numbers each stacked on top of each other. But what is important to note is that each row of numbers is saying the same thing but in a slightly different way, another language.
\square The mean of $1-100$ is 50 , the $50^{\text {th }}$ percentile, or in the standard scale where we transform the data to make the mean 0 , the z -score is 0 . All the same message...

Different Languages, Same Message

\square So how do we actually go about taking a scale like height, or intelligence, or your SAT score and turn into the simplified z -score?
\square We need to know a few things...
\square The mean (μ)

- The standard deviation (σ)
\square The score of interest (x, i.e. the person's score we want to translate)

Z Standard Score

\square Z-scores are standardized standard deviations, think of them as the "units of standard deviation", the scale or "language" of standard deviants
\square You can take a raw score, like an IQ test, and "translate it" into a z -score which makes interpretation easier and more comparable.

$$
\begin{aligned}
z-\text { score } & =\frac{\text { raw score }- \text { mean }}{\text { standard deviation }} \\
z-\text { score } & =\frac{x-\mu}{\sigma}
\end{aligned}
$$

Z Standard Score

Notice that Z-scores are the same values as Standard Deviations.

SAT Z-Scores

Convert the raw scores

$$
\begin{gathered}
\text { into Z-scores. } \\
\begin{array}{c}
z \text {-score }=\frac{x-\mu}{\sigma} \\
\mu=1000 \\
\sigma=210
\end{array}
\end{gathered}
$$

SAT Score (x)	Z-Score
1555	
980	
585	
790	
1270	
1035	

SAT Z-Scores

Convert the raw scores

$$
\begin{aligned}
& \text { into Z-scores. } \\
& \begin{array}{c}
2.64=\frac{1555-1000}{210} \\
\mu=1000 \\
\sigma=210
\end{array}
\end{aligned}
$$

SAT Score (x)	Z-Score
1555	2.64
980	
585	
790	
1270	
1035	

SAT Z-Scores

Convert the raw scores

$$
\begin{gathered}
\text { into Z-scores. } \\
\begin{array}{c}
z \text {-score }=\frac{x-\mu}{\sigma} \\
\mu=1000 \\
\sigma=210
\end{array}
\end{gathered}
$$

SAT Score (x)	Z-Score
1555	2.64
980	-0.10
1000	1.00
585	-1.98
790	-1.00
1270	1.29
1035	0.17

SAT Z-Scores

$$
\begin{aligned}
& \text { Convert the raw scores } \\
& \text { into Z-scores. } \\
& z \text {-score }=\frac{x-\mu}{\sigma} \quad \begin{array}{l}
\mu=1000 \\
\sigma=210
\end{array} \\
& \text { Knowing what you known } \\
& \text { now, what would a z-score } \\
& \text { of }-3 \text { tell you? }
\end{aligned}
$$

SAT Score (x)	Z-Score
1555	2.64
980	-0.10
1000	1.00
585	-1.98
790	-1.00
1270	1.29
1035	0.17

SAT Z-Scores

Convert the raw scores

into Z-scores.
$z-\operatorname{score}=\frac{x-\mu}{\sigma} \quad \begin{aligned} & \mu=1000 \\ & \sigma=210\end{aligned}$

SAT Score (x)	Z-Score
1555	2.64
980	-0.10
1000	1.00
585	-1.98
790	-1.00
1270	1.29
1035	0.17

The person would have a very low score of 370^{*}...

On the Curve

$$
\begin{aligned}
& \mu=1000 \\
& \sigma=210
\end{aligned}
$$

Here we have the z-scores and the SAT values associated with those z -scores mapped onto the normal curve.

On the Curve

Translating Back and Forth

$$
\begin{aligned}
z-\text { score } & =\frac{x-\mu}{\sigma} \\
x(\text { raw score }) & =z * \sigma+\mu \\
\mu(\text { mean }) & =x-z * \sigma \\
\sigma(\text { standard deviation }) & =\frac{x-\mu}{z-\text { score }}
\end{aligned}
$$

By rearranging the z-score formula (good ole algebra), you can determine any missing piece.
(Rather than memorizing them all, try to work them out with algebra, then you only have to know one equation.)

How Many in the Curve?

\square Notice these percentages... This tells us what percent of observations (ex. people) fall within this range. From a z-score of 0 to +1 , there are about 34% of people in this range.

- In our SAT example, this means that 34% of SAT test takers have a score between 1000 and 1210 , one standard deviation.

68, 95, 99 Rule

\square For normally distributed population data where the mean (μ) and the standard deviation (σ) are known, the curve follows certain rules.

For normally distributed data: 68% of observations fall between ± 1 SDs 95% of observations fall between ± 2 SDs 99.7% of observations fall between ± 3 SDs

68, 95, 99 Rule with SAT Data

$$
\begin{aligned}
& \mu=1000 \\
& \sigma=210
\end{aligned}
$$

68\% of people score between 790

$$
\text { to } 1210
$$

95\% of people score between 580 and 1420
99.7% of people score between 370* and 1630*

Proportions

For normally distributed data: $\sim .1 \%$ of observations fall between ± 4 to ± 3 SDs $\sim 2 \%$ of observations fall between ± 3 and ± 2 SDs
$\sim 14 \%$ of observations fall between ± 2 and ± 1 SDs
$\sim 34 \%$ of observations fall between ± 1 and 0 SDs

Cumulative

Z-scores and Percentiles

- You can look up any Z-score and determine the proportion that is equal to and above or equal to and below that given z -score
\square This is also how you get percentile scores
- Think back to your SAT or ACT
- Or ahead to your GRE...

TABLE B. 1 The Unit Normal Table*
*Column A lists z-score values. A vertical line drawn through a normal distribution at a z-score location divides the distribution into two sections.
Column B identifies the proportion in the larger section, called the body
Column C identifies the proportion in the smaller section, called the tail.
Column D identifies the proportion between the mean and the z-score.
Note: Because the normal distribution is symmetrical, the proportions for negative z-scores are the same as those for positive z-scores.

Z-scores and Percentiles

\square For example, the percentile of someone who scored a 1035 on the SAT, z-score $=0.17$, would be .5675. This means that $\sim 57 \%$ of test takers scored below 1035.

TABLE B. 1 The Unit Normal Table*

*Column A lists z-score values. A vertical line drawn through a normal distribution at a z-score location divides the distribution into two sections.
Column B identifies the proportion in the larger section, called the body
Column C identifies the proportion in the smaller section, called the tail
Column D identifies the proportion between the mean and the z-score.
Note: Because the normal distribution is symmetrical, the proportions for negative z-scores are the same as those for positive z-scores.

Z-scores and Percentiles

\square If you have a z-score of .25 , what is your percentile rank?
\square Z-score of 0.0 , what is your percentile rank?

- Z-score of .49, what is your percentile rank?

TABLE B. 1 The Unit Normal Table*

*Column A lists z-score values. A vertical line drawn through a normal distribution at a z-score location divides the distribution into two sections.
Column B identifies the proportion in the larger section, called the body
Column C identifies the proportion in the smaller section, called the tail.
Column D identifies the proportion between the mean and the z-score.
Note: Because the normal distribution is symmetrical, the proportions for negative z-scores are the same as those for positive z-scores.

Z-scores and Percentiles

\square Z-score of .25, percentile $=60$ th
\square Z-score of 0.0, percentile $=50$ th
\square Z-score of .49, percentile $=69^{\text {th }}$
\square Equivalent to saying 69\% scored below you

TABLE B. 1 The Unit Normal Table*

*Column A lists z-score values. A vertical line drawn through a normal distribution at a z-score location divides the distribution into two sections.
Column B identifies the proportion in the larger section, called the body
Column C identifies the proportion in the smaller section, called the tail
Column D identifies the proportion between the mean and the z-score.
Note: Because the normal distribution is symmetrical, the proportions for negative z-scores are the same as those for positive z-scores.

	0	+z	-z $\quad 0$				0 z
(A) z	(B) Proportion in Body	(C) Proportion in Tail	(D) Proportion Between Mean and z	(A) z	(B) Proportion in Body	(C) Proportion in Tail	(D) Proportion Between Mean and z
0.00	. 5000	. 5000	. 0000	0.25	. 5987	. 4013	. 0987
0.01	. 5040	. 4960	. 0040	0.26	. 6026	. 3974	. 1026
0.02	. 5080	. 4920	. 0080	0.27	. 6064	. 3936	. 1064
0.03	. 5120	. 4880	. 0120	0.28	. 6103	. 3897	. 1103
0.04	. 5160	. 4840	. 0160	0.29	. 6141	. 3859	. 1141
0.05	. 5199	. 4801	. 0199	0.30	. 6179	. 3821	. 1179
0.06	. 5239	. 4761	. 0239	0.31	. 6217	. 3783	. 1217
0.07	. 5279	. 4721	. 0279	0.32	. 6255	. 3745	. 1255
0.08	. 5319	. 4681	. 0319	0.33	. 6293	. 3707	. 1293
0.09	. 5359	. 4641	. 0359	0.34	. 6331	. 3669	. 1331
0.10	. 5398	. 4602	. 0398	0.35	. 6368	. 3632	. 1368
0.11	. 5438	. 4562	. 0438	0.36	. 6406	. 3594	. 1406
0.12	. 5478	. 4522	. 0478	0.37	. 6443	. 3557	. 1443
0.13	. 5517	. 4483	. 0517	0.38	. 6480	. 3520	. 1480
0.14	. 5557	. 4443	. 0557	0.39	. 6517	. 3483	. 1517
0.15	. 5596	. 4404	. 0596	0.40	. 6554	. 3446	. 1554
0.16	. 5636	. 4364	. 0636	0.41	. 6591	. 3409	. 1591
0.17	. 5675	. 4325	. 0675	0.42	. 6628	. 3372	. 1628
0.18	. 5714	. 4286	. 0714	0.43	. 6664	. 3336	. 1664
0.19	. 5753	. 4247	. 0753	0.44	. 6700	. 3300	. 1700
0.20	. 5793	. 4207	. 0793	0.45	. 6736	. 3264	. 1736
0.21	. 5832	. 4168	. 0832	0.46	. 6772	. 3228	. 1772
0.22	. 5871	. 4129	. 0871	0.47	. 6808	. 3192	. 1808
0.23	. 5910	. 4090	. 0910	0.48	. 6844	. 3156	. 1844
0.24	. 5948	. 4052	. 0948	0.49	. 6879	. 3121	. 1879

Z-scores and Percentiles

\square What percent scored ABOVE you if you had a z-score of .49?

- 31\%
\square What percent scored ABOVE you if you had a z-score of .25?
- 40\%

TABLE B. 1 The Unit Normal Table*

*Column A lists z-score values. A vertical line drawn through a normal distribution at a z-score location divides the distribution into two sections.
Column B identifies the proportion in the larger section, called the body
Column C identifies the proportion in the smaller section, called the tail.
Column D identifies the proportion between the mean and the z-score.
Note: Because the normal distribution is symmetrical, the proportions for negative z-scores are the same as those for positive z-scores.

(A) z	(B) Proportion in Body	(C) Proportion in Tail	(D) Proportion Between Mean and z	(A) z	(B) Proportion in Body	(C) Proportion in Tail	(D) Proportion Between Mean and z
0.00	. 5000	. 5000	. 0000	0.25	. 5987	. 4013	. 0987
0.01	. 5040	. 4960	. 0040	0.26	. 6026	. 3974	. 1026
0.02	. 5080	. 4920	. 0080	0.27	. 6064	. 3936	. 1064
0.03	. 5120	. 4880	. 0120	0.28	. 6103	. 3897	. 1103
0.04	. 5160	. 4840	. 0160	0.29	. 6141	. 3859	. 1141
0.05	. 5199	. 4801	. 0199	0.30	. 6179	. 3821	. 1179
0.06	. 5239	. 4761	. 0239	0.31	. 6217	. 3783	. 1217
0.07	. 5279	. 4721	. 0279	0.32	. 6255	. 3745	. 1255
0.08	. 5319	. 4681	. 0319	0.33	. 6293	. 3707	. 1293
0.09	. 5359	. 4641	. 0359	0.34	. 6331	. 3669	. 1331
0.10	. 5398	. 4602	. 0398	0.35	. 6368	. 3632	. 1368
0.11	. 5438	. 4562	. 0438	0.36	. 6406	. 3594	. 1406
0.12	. 5478	. 4522	. 0478	0.37	. 6443	. 3557	. 1443
0.13	. 5517	. 4483	. 0517	0.38	. 6480	. 3520	. 1480
0.14	. 5557	. 4443	. 0557	0.39	. 6517	. 3483	. 1517
0.15	. 5596	. 4404	. 0596	0.40	. 6554	. 3446	. 1554
0.16	. 5636	. 4364	. 0636	0.41	. 6591	. 3409	. 1591
0.17	. 5675	. 4325	. 0675	0.42	. 6628	. 3372	. 1628
0.18	. 5714	. 4286	. 0714	0.43	. 6664	. 3336	. 1664
0.19	. 5753	. 4247	. 0753	0.44	. 6700	. 3300	. 1700
0.20	. 5793	. 4207	. 0793	0.45	. 6736	. 3264	. 1736
0.21	. 5832	. 4168	. 0832	0.46	. 6772	. 3228	. 1772
0.22	. 5871	. 4129	. 0871	0.47	. 6808	. 3192	. 1808
0.23	. 5910	. 4090	. 0910	0.48	. 6844	. 3156	. 1844
0.24	. 5948	. 4052	. 0948	0.49	. 6879	. 3121	. 1879

Z-scores and Probability

\square If I randomly select someone, what is the probability they scored ABOVE you if you had a z -score of .49?

- P (z > .49)
- . 31
\square What is the probability they scored ABOVE you if you had a z-score of . 25 ?
- $\mathrm{P}(\mathrm{z}>\mathrm{r} .25)$

■. 40

Notation: $P(x)$, pronounced P of x where x is some condition of interest.

TABLE B. 1 The Unit Normal Table*

*Column A lists z-score values. A vertical line drawn through a normal distribution at a z-score location divides the distribution into two sections.
Column B identifies the proportion in the larger section, called the body
Column C identifies the proportion in the smaller section, called the tail.
Column D identifies the proportion between the mean and the z-score.
Note: Because the normal distribution is symmetrical, the proportions for negative z-scores are the same as those for positive z-scores.

Two Students in Different Classes

There are two different instructors teaching Statistical Literacy. A student in Z's class had a score of 45 on the first exam and a student in D's class (assigned a different exam) had a score of 50 .

Who did better?

What information do we need?

Two Students in Different Classes

There are two different instructors teaching Statistical Literacy. A student in Z's class had a score of 45 on the first exam and a student in D's class (assigned a different exam) had a score of 50.

$$
z-s c o r e=\frac{x-\mu}{\sigma}
$$

Z's Exam:

$$
\mu=40
$$

D's Exam:

 $\mu=55$$$
\sigma=5
$$

$$
\sigma=5
$$

$$
x=45
$$

$$
x=50
$$

Two Students in Different Classes

There are two different instructors teaching Statistical Literacy. A student in Z's class had a score of 45 on the first exam and a student in D's class (assigned a different exam) had a score of 50.

By transforming the data into a z-score, these scores are now comparable!
Z's Exam:
D's Exam:

$$
\begin{aligned}
x-\mu & \mu=55
\end{aligned}
$$

$$
\sigma=5
$$

$$
z-\text { score }=\frac{\sigma}{\sigma}
$$

$$
\sigma=5
$$

$$
x=45
$$

$$
z=+1.0
$$

$$
\begin{gathered}
x=50 \\
z=-1.0
\end{gathered}
$$

Two Students in Different Classes

There are two different instructors teaching Statistical Literacy. A student in Z's class had a score of 45 on the first exam and a student in D's class (assigned a different exam) had a score of 50.

By transforming the data into a z-score, these scores are now comparable!

Z's Exam:

$$
\mu=40
$$

$$
\sigma=5
$$

$$
x=45
$$

$$
z=+1.0
$$

D's Exam:
$\mu=55$
$>$

$$
\sigma=5
$$

$$
x=50
$$

$$
z=-1.0
$$

Two Students in Different Classes

There are two different instructors teaching Statistical Literacy. A student in Z's class had a score of 45 on the first exam and a student in D's class (assigned a different exam) had a score of 50.
The Student in Z's class has a score that is one standard deviation above the mean, while the Student in D's class is one standard deviation below the mean.

Z's Exam:

$$
\begin{gathered}
\mu=40 \\
\sigma=5 \\
x=45 \\
z=+1.0
\end{gathered}
$$

D's Exam:

$$
\begin{gathered}
\mu=55 \\
\sigma=5 \\
x=50 \\
z=-1.0
\end{gathered}
$$

Real World Example Severity (CELF-5)

Table 4.3 Distances From the Mean of Selected Standard Scores

Standard Score	Distance From Mean	Percentile Rank
145	+3 SD	99.9
130	+2 SD	98
115	+ SD	84
100	Mean	50
85	- SD	16
80	-1.33 SD	9
77.5	-1.5 SD	6.7
70	-2 SD	2
55	-3 SD	0.1

Very Low/Severe (≤ 70)
Low/Moderate (71-77)
Below Average/Mild (78-85)
Average (86-114)

Why Standardize?

- "Translating" raw data into a standardized scales allows us to interpret any one person's score more deeply and relatively to other people.
\square Ex. A z-score of +2.0 would tell you a person did very well, and you don't have to know anything about the raw score.
- Ex. A z-score of -2.0 on a language test would tell you this person may need some speech therapy.
\square The conversion of data to have a mean of zero with a standard deviation of one makes computations and interpretations easier. This type of "translating of data" is at the core of much of what we will be doing for the rest of the course.

Why are we doing this, again?

\square We can take any scale and transform it into simplified, standard scale... the Z-scale.
\square The Z-scale and the Z-scores associated with it allow us to make comparison across different scales, test, and situations.
\square We can also use standardized Z-scores to help us figure out the probability of things. A core aspect of statistics.

\square We move beyond one person's score and start looking at what a standardized mean value you can tell us...

Probability of z-scores vs z-tests

Two Students in Different Classes

Z's Exam:

$$
\begin{gathered}
\mu=40 \\
\sigma=5 \\
x=45
\end{gathered}
$$

D's Exam:

$$
\begin{gathered}
\mu=55 \\
\sigma=5 \\
x=50
\end{gathered}
$$

```
################################
########## z-scores ############
#################################
```

```
##### Z's Exam z-score #####
```


Z's Exam z-score

person_Z <- 45
person_Z <- 45
pop_mean_Z <- 40
pop_mean_Z <- 40
sd_Z <- 5
sd_Z <- 5
z_score_Z <- (person_Z - pop_mean_Z)/sd_Z
z_score_Z <- (person_Z - pop_mean_Z)/sd_Z

D's Exam z-score

D's Exam z-score

person_D <- 50
person_D <- 50
pop_mean_D <- 55
pop_mean_D <- 55
sd_D <- 5
sd_D <- 5
z_score_D <- (person_D - pop_mean_D)/sd_D
z_score_D <- (person_D - pop_mean_D)/sd_D
z_score_Z
z_score_Z
z_score_D

```
z_score_D
```


SAT Z-Scores

$$
\begin{gathered}
\mu=1000 \\
\sigma=210 \\
x=1555
\end{gathered}
$$

The pnorm() functions will return the proportion (probability) rather than having to look up in a z-table.
\#
\#\#\# z-scores \& Probability \#\#\#\#
\#
\# Calculate a z-score

```
SAT_mean <- 1000
SAT_sd
SAT_score <- 1555
SAT_Z_score <- (SAT_score - SAT_mean)/SAT_sd
```

\# The function "pnorn()" can give you the proprotion (i.e the probability,
\# the "p" in "pnorm") from a normal distribution (the "norm" in "pnorm").
\# You need to tell R the z-score (q), the mean, the sd, and the final
\# argument you need to give it is where or not to include the tail.
\# You can tell lower.tail = FALSE, which is the equivelent of asking R the proportion of
\# people that score ABOVE that z-score, $P(z<2.64)$
\# If you have a 1555 on the SAT, less tha 0.04% of people scored higher than you
$\operatorname{pnorm}(q=1555$, mean=1000, $s d=210$, lower.tail=FALSE)
pnorm(SAT_Z_score, mean $=0$, sd $=1$, lower.tail = FALSE)
\# You can tell lower. tail = TRUE, which is the equivelent of asking R the proportion of
\# people that score BELOW that z-score, this is like a percentile, $P(z>2.64)$
\# If you have a 1555 on the SAT, you are in the 99.6 th percentile,
\# You scored bettr than 99.6\% of people
pnorm($\mathbf{q}=1555$, mean=1000, $\mathbf{s d = 2 1 0 , ~ l o w e r . t a i l = T R U E) ~ \# r a w ~ v a l u e s ~}$
pnorm(SAT_Z_score, mean = 0, sd = 1, lower.tail = TRUE) \#standardized values
\# If you want to know how many people fall between two z-scores,
\# (symmetrical z-scores, meaning -1.96 to +1.96), $P(-1.96<z<1.96)$
1-pnorm(q
mean=0, $s d=1$, lower.tail=FALSE)*

