EDP308: STATISTICAL LITERACY

The University of Texas at Austin, Fall 2020
RAZ: Rebecca A. Zárate, MA

Overview

\square Types of Statistics
\square Descriptive vs. Inferential
\square Central Tendency

- Mean, Median, Mode
\square Skewed Data
- Left (negative skew)
- Right (positive skew)
\square Probability Distributions
- Normal, Bimodal, Uniform
\square Notation and Differentiations
\square Greek is for Populations, Roman is for Samples
\square Calculating a Mean and Median in R

What is the purpose?

\square Statistics serve one of two purposes.
\square Used to DESCRIBE a sample data set
■ Summaries (mean, variance)
■ Visual representations (graphs, charts)

- Used to INFER and draw conclusions about the population as a whole from a data set
■ Hypothesis testing
- Variance comparisons
- Regression analysis

Two Types of Statistics

Descriptive Statistics

\square Summarizing sample data sets

- Distribution
- Frequency, \%
\square Central Tendencies
- Mean, median, modes
- Measures of Spread
- Standard deviation, variance
- Measures of Association

■ Correlation

Inferential Statistics

\square Inferring things about a population from sample

- Hypothesis Testing
\square Determining Association
- Regression Analysis
- Comparing Means
- T-tests
\square Comparing Variance
- Chi-Squared
- ANOVA

We'll focus on Descriptive Statistics for now.

Central Tendency

Mean

Median
Mode

What are they?

 What do they tell us?Why use one over the other?

Central Tendencies

- Mean (\bar{x}) :
- Average of set

■ Ex. $1,2,3,4,5=15$ (total) $/ 5$ (number of \#s) $=3$

- 3 is the average
\square Median:
- Middle-ranked item of set, splits set 50\%
- Good for skewed data
- Ex. 2, 2, 2, 5, 6, 7, 7
- 5 is the median
\square Mode:
- Most recurrent item
- Good for categorical data
- Ex. Ex. 2, 2, 2, 5, 6, 7, 7

■ 2 is the most recurrent value

Money.

What is the average income in the USA? (How could I ask this in a better way?)

Money.

\square The mean income in the USA is around: \$48-69k
\square How does this strike you? Sound right?

Income

Imagine a bar filled with your every day, average American...

With their average income...

Bill Gates walks into a bar...

...EVERYONE INSIDE BECOMES

A MILLIONAIRE!...

 ...on average...Those are just back statistics...

Mean vs. Median

(1) $\left[\begin{array}{c}\text { Name } \\ \text { Tom } \\ \text { Larry } \\ \text { Susan } \\ \text { Paul } \\ \text { Marcus } \\ \text { Randy } \\ \text { Sandy } \\ \text { Tim } \\ \text { Pam } \\ \text { Jack }\end{array}\right.$
Annual Income $\left.\begin{array}{c} \\ \$ 32,000 \\ \$ 36,000 \\ \$ 39,000 \\ \$ 41,000 \\ \$ 45,000 \\ \$ 50,000 \\ \$ 57,000 \\ \$ 60,000 \\ \$ 65,000 \\ \$ 80,000\end{array}\right]$

\(\left[\begin{array}{c}Name
Tom
Larry
Susan
Paul
Marcus
Randy
Sandy
Tim
Pam
Bill Gates\end{array}\right.\)

mean income of $\$ 50,500$
median income of $\$ 47,500$
mean income $\$ 100,042,500$
median income of $\$ 47,500$

Sensitivity and Outliers

\square Mean is sensitive to outlier, l'm look at you Bill...
\square Medians can be a more accurate representation.

negative direction
(a)

positive direction
(b)

Skews

This is a LEFT skew, Or negative skew.

This is a RIGHT SKEW
Or positive skew.

Skews are always referring to the skewer...
Like Bill Gates who is a skew-er of mean income

negative direction
(a)

positive direction
(b)

Skews vs Normality...

So if the income in America is skewed because of that top 1%, what does "normal" data look like?

Behold! The Normal Distribution

What is "Normal?"

\square Things that distribute "normally" are symmetrical, same amount below the mean as above the mean and is unimodal, meaning there is one big hump (the mode)

- Natural Examples:

■ Human height, temperature, heart rate, blood-pressure

- Delivery time, grades, guesses(?)
- The typical value of something usually lingers (or clumps) around the mean and are more frequent.
■ Ex. The majority of females are around 5'4-ish with a few extremely tall or extremely short

Height by Gender

What do you notice in this graph? Variables? What are the axes?

Piles of People

\square Think of the curve as a pile of people...

- Most people are piled up on top of each other in the middle while a few extremely low or extremely high cases are at the ends of the curve.

The probability of seeing

Height by Gender

40 Minutes or Less or It's Free...

Bimodal Distributions

\square Bimodal (or multimodal if more than 2)
\square Two distinct humps rather than one normal one
■ Two (or more) modes, the humps

What kind of data could produce this?

Amazon Reviews

\square Bimodal

- User rating can look like this usually because people who are extremely satisfied or extremely unsatisfied feel motivated to share their opinion.

User Ratings

Bimodal Distributions

\square Can also happen when you have two distinct groups answering the same questions.
\square Ex. Measuring height among both sexes
\square Ex. Clinical vs. Non-Clinical populations

Uniform Distributions

\square Uniform distributions (also called rectangular) occur when all the possible values have equal likelihood of occurring
\square Like rolling a die
Rolling a Fair Die

Probability Distributions

\square There are many different types of distributions that are used for different types of data... These are just a few...

- Normal Distribution
- Binomial Distribution
- Uniform Distribution
- Poisson Distribution
- Bernoulli Distribution
\square All distributions help us to quantify and determine the probability of seeing a particular observations
\square Ex. The probability of seeing a woman that is 5 ' 4 is about . 18

Notation and Differentiations

Populations and Samples

\square Now that we are starting to dive into numbers, we need to have a way to label them in such a way that we know if are talking about a sample or a population.
\square When we design a study, we first define
\square The population of interest
Ex. What is the average level of stress for all college students in America?
\square Reality Check: Can we ask every single college student in America their level of stress? No... Instead we must take a sample from the population

- Ex. Sample 1,000 students from UT, St. Edward's, and ACC

Wording...

\square We have different vocabulary for the numbers depending on if we are talking about a Population or a Sample

Parameters are for Populations Statistics are for Samples

An average is example of a parameter for a population and statistic for a sample.

Who are we talking about?

\square In statistics sometimes you will see common letters but sometimes you will see something that looks like Greek, which it is...
\square These variable distinctions tell you whether you are talking about an entire population or just a small sample from the population.
\square These distinction will become more important as we move through the course...

- Equations change depending on whether you are working with an entire population or just a sample.

Who are we talking about?

Attribute

\square Includes

- Mean
- Sum of Squares
\square Variance
- Standard Deviation
\square Size
\square Numerical Descriptor

Population

\square Complete set
$\square \mu$ ("mu")
\square SS ("Sum of Squares")
$\square \sigma^{2}$ ("sigma squared")
$\square \sigma$ ("sigma")
$\square \mathrm{N}$

- "Parameter"

Sample

\square Subset of population

- \bar{X} ("x bar")
\square SS ("Sum of Squares")
$\square s^{2}$ ("variance")
$\square s$ ("standard deviation")
$\square \mathrm{n}$
\square "Statistic"
\square We now know how to quantify the average value of a dataset, next we will quantify the average amount of difference in a dataset...

Variance

Calculating a Mean and Median in R

Calculating a Mean and Median in R

```
##############################
##### MEAN AND MEDIAN ########
##############################
#### HISTOGRAM & BOXPLOT ####
##############################
# Data from 20 women asking their height
height <- c(69, 63, 54, 61, 68, 61, 62, 56, 64, 66, 60, 61, 73, 63, 65, 72, 70, 59, 76, 59)
# Using the R function "mean()" we can quickly calculate the mean whic is 64.1 inches
mean(height)
# Using the R function "median()" we can quickly calculate the median whic is 63 inches
median(height)
# Here you can make a quick histogram
hist(height)
# And here a quick boxplot
boxplot(height)
```


Calculating a Mean and Median in R

