## EDP308: STATISTICAL LITERACY

The University of Texas at Austin, Fall 2020 RAZ: Rebecca A. Zárate, MA

#### Overview

#### Types of Statistics

- Descriptive vs. Inferential
- Central Tendency
  - Mean, Median, Mode
- Skewed Data
  - Left (negative skew)
  - Right (positive skew)
- Probability Distributions
  - Normal, Bimodal, Uniform
- Notation and Differentiations
  - Greek is for Populations, Roman is for Samples
- Calculating a Mean and Median in R



#### What is the purpose?

- □ Statistics serve one of two purposes.
  - Used to DESCRIBE a sample data set
    - Summaries (mean, variance)
    - Visual representations (graphs, charts)
  - Used to INFER and draw conclusions about the population as a whole from a data set
    - Hypothesis testing
    - Variance comparisons
    - Regression analysis

## Two Types of Statistics

#### **Descriptive Statistics**

- Summarizing sample data sets
  - Distribution
    - Frequency, %
  - Central Tendencies
    - Mean, median, modes
  - Measures of Spread
    - Standard deviation, variance
  - Measures of Association
    - Correlation

#### Inferential Statistics

- Inferring things about a population from sample
  - Hypothesis Testing
  - Determining Association
    - Regression Analysis
  - Comparing Means
    - T-tests
  - Comparing Variance
    - Chi-Squared
    - ANOVA

We'll focus on Descriptive Statistics for now.



#### **Central Tendency**

Mean Median Mode

What are they? What do they tell us? Why use one over the other?

#### **Central Tendencies**

- $\Box$  Mean ( $\bar{x}$ ):
  - Average of set
    - Ex. 1, 2, 3, 4, 5 = 15 (total)/5 (number of #s) = 3
    - 3 is the average
- Median:
  - Middle-ranked item of set, splits set 50%
  - Good for skewed data
    - Ex. 2, 2, 2, 5, 6, 7, 7
    - 5 is the median
- Mode:
  - Most recurrent item
  - Good for categorical data
    - Ex. Ex. 2, 2, 2, 5, 6, 7, 7
    - 2 is the most recurrent value



#### What is the average income in the USA? (How could I ask this in a better way?)





The mean income in the USA is around: \$48-69k
 How does this strike you? Sound right?





Imagine a bar filled with your every day, average American... With their average income...

## Then...

#### Bill Gates walks into a bar...

# ... EVERYONE INSIDE BECOMES A MILLIONAIRE!... ...on average... Those are just back statistics...

#### Mean vs. Median



mean income of \$50,500 median income of \$47,500 mean income \$100,042,500 median income of \$47,500

Annual Income

\$32,000

\$36,000

\$39,000

\$41,000

\$45,000

\$50,000

\$57,000

\$60,000

\$65,000

\$1,000,000,000

#### Sensitivity and Outliers

- □ Mean is sensitive to outlier, I'm look at you Bill...
  - Medians can be a more accurate representation.



#### Skews



#### Skews vs Normality...

So if the income in America is skewed because of that top 1%, what does "normal" data look like?



#### **Behold!** The Normal Distribution



#### What is "Normal?"

- Things that distribute "normally" are symmetrical, same amount below the mean as above the mean and is unimodal, meaning there is one big hump (the mode)
  - Natural Examples:
    - Human height, temperature, heart rate, blood-pressure
    - Delivery time, grades, guesses(?)
  - The typical value of something usually lingers (or clumps) around the mean and are more frequent.
    - Ex. The majority of females are around 5'4-ish with a few extremely tall or extremely short

#### Height by Gender



What do you notice in this graph? Variables? What are the axes?

#### **Piles of People**

 $\Box$  Think of the curve as a pile of people...

Most people are piled up on top of each other in the middle while a few extremely low or extremely high cases are at the ends of the curve.



#### Height by Gender



#### 40 Minutes or Less or It's Free...



#### **Bimodal Distributions**

- □ Bimodal (or multimodal if more than 2)
  - Two distinct humps rather than one normal one
    - Two (or more) modes, the humps

What kind of data could produce this?



#### Amazon Reviews

#### Bimodal

User rating can look like this usually because people who are extremely satisfied or extremely unsatisfied feel motivated to share their opinion.



User Ratings

#### **Bimodal Distributions**

- Can also happen when you have two distinct groups answering the same questions.
  - Ex. Measuring height among both sexes
  - Ex. Clinical vs. Non-Clinical populations



#### **Uniform Distributions**

- Uniform distributions (also called rectangular) occur when all the possible values have equal likelihood of occurring
  - Like rolling a die



#### **Probability Distributions**

- There are many different types of distributions that are used for different types of data... These are just a few...
  - Normal Distribution
  - Binomial Distribution
  - Uniform Distribution
  - Poisson Distribution

Bernoulli Distribution

We'll focus on the Normal distribution for this course.

- All distributions help us to quantify and determine the probability of seeing a particular observations
  - Ex. The probability of seeing a woman that is 5'4 is about .18

#### Notation and Differentiations

#### **Populations and Samples**

- Now that we are starting to dive into numbers, we need to have a way to label them in such a way that we know if are talking about a sample or a population.
- □ When we design a study, we first define
  - The population of interest
    - Ex. What is the average level of stress for <u>all college students in</u> <u>America</u>?
- Reality Check: Can we ask every single college student in America their level of stress? No... Instead we must take a sample from the population

Ex. Sample 1,000 students from UT, St. Edward's, and ACC

#### Wording...

We have different vocabulary for the numbers depending on if we are talking about a Population or a Sample

## <u>Parameters are for Populations</u> <u>Statistics are for Samples</u>

An average is example of a parameter for a population and statistic for a sample.

#### Who are we talking about?

- In statistics sometimes you will see common letters but sometimes you will see something that looks like Greek, which it is...
- These variable distinctions tell you whether you are talking about an entire population or just a small sample from the population.
- These distinction will become more important as we move through the course...
  - Equations change depending on whether you are working with an entire population or just a sample.

### Who are we talking about?

| Attribute                                         | Population                        | Sample                           |
|---------------------------------------------------|-----------------------------------|----------------------------------|
| Includes                                          | Complete set                      | Subset of population             |
| □ Mean<br>□ Sum of                                | μ ("mu")                          | $\square \overline{x}$ ("x bar") |
| Squares                                           | SS ("Sum of Squares")             | SS ("Sum of Squares")            |
| Variance                                          | $\Box \sigma^2$ ("sigma squared") | s <sup>2</sup> ("variance")      |
| <ul> <li>Standard</li> <li>Deviation</li> </ul>   | σ ("sigma")                       | s ("standard deviation")         |
| Size                                              | $\square$ N                       | $\square$ <b>n</b>               |
| <ul> <li>Numerical</li> <li>Descriptor</li> </ul> | "Parameter"                       | "Statistic"                      |

#### Up Next...

We now know how to quantify the average value of a dataset, next we will quantify the average amount of difference in a dataset...

#### Variance

#### Calculating a Mean and Median in R

#### Calculating a Mean and Median in R

# Data from 20 women asking their height
height <- c(69, 63, 54, 61, 68, 61, 62, 56, 64, 66, 60, 61, 73, 63, 65, 72, 70, 59, 76, 59)</pre>

# Using the R function "mean()" we can quickly calculate the mean whic is 64.1 inches mean(height)

# Using the R function "median()" we can quickly calculate the median whic is 63 inches median(height)

# Here you can make a quick histogram
hist(height)

# And here a quick boxplot boxplot(height)

#### Calculating a Mean and Median in R

