## EDP308: STATISTICAL LITERACY

The University of Texas at Austin, Fall 2020
RAZ: Rebecca A. Zárate, MA

## Overview

$\square$ Goodness of Fit Test

- Equal Proportions
- Unequal Proportions
$\square$ Goodness of Fit Test Examples
- Movie Genre
$\square$ UT vs. USA Race-Ethnic Demographics
- Skittles
$\square$ Police Killings in 2015
$\square$ Chi-Squared Goodness of Fit Test in $R$


# Chi-Squared Goodness of Fit 

## How good is the fit?

$\square$ Let's say I am trying to test some hypothesis about the US population.

- I want to be sure to get an accurate representation of race and ethnicity.
- I take a sample of 100 UT students...


## Will this sample be representative? Will it have a good "fit"?

## Goodness of Fit Test

$\square$ Chi-Squared Goodness of Fit Test is like the ChiSquared Test of Independence, but now we are only have ONE (rather than two) categorical variables, and we want to know is if the proportion in each group is either:
$\square$ Equal Proportions
$\square$ Sex in the Population

- Ex. 50\% male, 50\% female
- Unequal Proportions
- Age of the Work Force in USA
- Ex. 36\% 18-44 years, 26\% 45-64 years, 13\% 65+


## Goodness of Fit Examples

$\square$ Do the proportions of admission applications to UT from different parts of the state match the proportions of people that live in that area?
$\square$ At a wedding, based on people's preferences, what proportions of songs should be waltzes, dance songs, and cumbias?
$\square$ Are there equal proportions of Skittle colors in a bag?
$\square$ Are there equal proportions of Men and Women at UT?

## Goodness of Fit Hypotheses

$\square$ As usual, our null hypothesis is that the proportions are all equal (or equal to some known proportions)

$$
H_{0}: p_{1}=p_{2}=p_{3}
$$

$H_{0}$ :The proportions are the same
(or equal to a known pattern)for each level/group of the variable.
$\square$ The alternative hypothesis is that the proportions are not the same (or do not follow the known pattern) for each level/group of the variable:

$$
H_{1}: p_{1} \neq p_{2} \neq p_{3}
$$

$H_{1}$ :The proportions are not the same for each level
of the variable (or do not match a known pattern).

## Try it. Movie Genre

$\square$ You go out and ask 120 Netflix and Chill people to see if there is a preference for genre of movie. Use the goodness of fit test at $\alpha=.05$ to test this.

## What would the EXPECTED values be for each genre?

| Favorite Genre | Observed |
| :--- | :--- |
| Action | 32 |
| Comedy | 24 |
| Romance | 35 |
| Horror | 29 |
| Total | 120 |

$$
H_{0}: p_{\text {Action }}=p_{\text {Comedy }}=p_{\text {Romance }}=p_{\text {Horror }}=.25
$$

$H_{1}$ : The proportions are not the same for each movie genre.

## Try it. Movie Genre

$\square$ If we assuming the null is true (genre preferences are all equal), then we would expect equal frequency for all the genres.

- 120 (responses) $/ 4$ (genres) $=30$

| Favorite Genre | Observed | Expected |
| :--- | :--- | :--- |
| Action | 32 | 30 |
| Comedy | 24 | 30 |
| Romance | 35 | 30 |
| Horror | 29 | 30 |
| Total | 120 | 120 |

## Try it. Movie Genre

Step 1:

$$
\begin{gathered}
H_{0}: p_{\text {Action }}=p_{\text {Comedy }}=p_{\text {Romance }}=p_{\text {Horror }}=.25 \\
H_{1}: \text { The proportions are not the same for each genre }
\end{gathered}
$$

Step 2:

$$
\alpha=.05
$$

Step 3:

$$
\begin{gathered}
d f=4-1=3 \\
d f=3
\end{gathered}
$$

Step 4:

$$
\chi_{c r i t}^{2}=7.81
$$

## Step 5,6: Compute Test Statistic and Conclusions

| Favorite Genre | Observed | Expected | $\chi^{2}=\sum \frac{(\text { Observed }- \text { Expected })^{2}}{\text { Expected }}$ |
| :---: | :---: | :---: | :---: |
| Action | 32 | 30 |  |
| Comedy | 24 | 30 |  |
| Romance | 35 | 30 | Using $\alpha=.05$ and $d f=$ 3 , our $\chi_{\text {crit }}^{2}=7.81$. Because our $\chi_{\text {stat }}^{2}$ is not past our $\chi_{\text {crit }}^{2}$, we fail to reject $H_{0}$. |
| Horror | 29 | 30 |  |
| Total | 120 | 120 |  |
| $\begin{aligned} & \chi^{2}=\frac{(32-30)^{2}}{30}+\frac{(24-30)^{2}}{30}+ \\ & \frac{(35-30)^{2}}{30}+\frac{(29-30)^{2}}{30} \approx 2.2 \end{aligned}$ <br> People do tend to see movies in equal proportions. |  |  |  |

## Try it. UT and USA

Since we use college students for a lot of social science research, I want to know if the convenient UT sample I took is a "good fit" to represent the USA. Conduct a Chi-Squared Goodness of Fit test on the data below using $\alpha=.05$.

| Race/Ethnicity | Observed | Expected |
| :--- | :--- | :--- |
| White | 41 | 61 |
| Black | 4 | 13 |
| Latinx | 21 | 16 |
| Asian | 19 | 5 |
| Other | 15 | 5 |

## Try it. UT and USA

Step 1:
$H_{0}$ : A sample of UT students matches the national averages of race and ethnicity
$H_{1}$ : A sample of UT students does not match the national averages of race and ethnicity
Step 2:

$$
\alpha=.05
$$

Step 3:

$$
\chi^{2}=\sum \frac{(\text { Observed }- \text { Expected })^{2}}{\text { Expected }}
$$

Step 4:

$$
d f=4 \text { and } \alpha=.05, \chi_{c r i t}^{2}=9.49
$$

## Step 5,6: Compute Test Statistic and Conclusions

| Race/Ethnicity | Observed | Expected |  |
| :--- | :--- | :--- | :--- |
| White | 41 | 61 |  |
| Black | 4 | 13 |  |
| Latinx | 21 | 16 |  |
| Asian | 19 | 5 |  |
| Other | 15 | 5 |  |
| $\qquad$ | $\chi^{2}=\frac{(41-61)^{2}}{61}+\frac{(4-13)^{2}}{13}+\frac{(21-16)^{2}}{16}+\frac{(19-5)^{2}}{5}+\frac{(15-5)^{2}}{5} \approx 73.55$ |  |  |

Using $\alpha=.05$ and $d f=4$, our $\chi_{\text {stat }}^{2}=73.55$. Because our $\chi_{\text {stat }}^{2}$ is past our $\chi_{\text {crit }}^{2}$, we reject $H_{0}$. The UT sample does not match the USA race/ethnic population.

## Try it. Skittles

Test whether all the colors (flavors) of Skittles are present in equal proportions using $\alpha=.05$.

| Color (Flavor) | In this bag | Expected |
| :--- | :--- | :--- |
| Red | 80 | 73 |
| Orange | 87 | 73 |
| Yellow | 59 | 73 |
| Green | 70 | 73 |
| Purple | 60 | 73 |
| Total | $\mathbf{3 6 5}$ | $\mathbf{3 6 5}$ |

Step 1:
$H_{0}$ :The colors of Skittles are found in equal proportions. $H_{1}$ : The colors of Skittles are not found in equal proportions.

## Try it. Skittles

Step 2:

$$
\alpha=.05
$$

Step 3:

$$
\chi^{2}=\sum \frac{(\text { Observed }- \text { Expected })^{2}}{\text { Expected }}
$$

Step 4:

$$
d f=5-1=4
$$

With $d f=3$, and $\alpha=.05$, we find $\chi_{c r i t}^{2}=9.49$

## Try it. Skittles

Step 5:

| Color (Flavor) | In this bag | Expected |
| :--- | :--- | :--- |
| Red | 80 | 73 |
| Orange | 87 | 73 |
| Yellow | 59 | 73 |
| Green | 70 | 73 |
| Purple | 60 | 73 |
| Total | $\mathbf{3 6 5}$ | $\mathbf{3 6 5}$ |

$\chi^{2}=\frac{(80-73)^{2}}{73}+\frac{(87-73)^{2}}{73}+\frac{(59-73)^{2}}{73}+\frac{(70-73)^{2}}{73}+\frac{(60-73)^{2}}{73} \approx 8.47$

Our $\chi_{\text {stat }}^{2}=8.47$ and our $\chi_{\text {crit }}^{2}=9.49$. Because our $\chi_{\text {stat }}^{2}$ does not pass $\chi_{\text {crit }}^{2}$, we fail to reject the null hypothesis. There is no reason to suggest Skittles colors are not represented in equal proportions.

## Police Killings in 2015

$\square$ For decades, we have heard of cases when a police office kills someone in the line of duty.
$\square$ Sometimes these actions are justified, and sometimes they are not.
$\square$ Some hold the belief that certain minorities are targeted more frequently than the White majority.
$\square$ Others dispute this and believe no racial or ethnic group is disproportionally targeted (NULL hypothesis).
$\square$ Let's use statistics to see if we can provide some evidence one way or the other.

## Police Killings in 2015

$\square$ State the Hypotheses:

- $\mathrm{H}_{0}$ : Police killings occur in equal proportions to the racial and ethnic demographics of the USA
- Asian $=6 \%$, Black $=13 \%$, Latinx $=16 \%$,

Native American = 1\%, (Non-Latinx) White = 64\%
$\square \mathrm{H}_{1}$ : Police killings DO NOT occur in equal proportions to the racial and ethnic demographics of the USA
$\square \alpha=.05$
$\square$ Using a Chi-Squared Goodness of Fit Test
$\square d f=5$ (groups) - $1=4$

- $\chi_{c r i t}^{2}=9.49$


## Police Killings in 2015 in R

## Using data.

```
#############################################
############## Chi-Squared ##################
#########G|
###############################################
# Reading in a data set of police killings from }201
police_killings <- read.csv("police_killings_2015.csv")
# Filtering out cases where the race-ethnicity is Unknown or Native American
police_killings <- filter(police_killings, police_killings$raceethnicity != "Unknown")
police_killings_table <- table(police_killings$raceethnicity)
# Because we have an expected pattern for race-ethnicity in the USA, we need to tell R
# what those proportions are. Note: The proprotions must add up to 1. There is some rounding with these numbers
# so they have been slightly tweeked but not by more than 1% for any group
# The order: Asian = 6%, Black = 13%, Latinx = 16%, Native American = 1%, (Non-Latinx) White = 64%
expected_proportions <- c(.06, .13, .16, .01, .64)
#We then put the UT data and the expected proportions into the "chisq.test()" function
police_killings_chi_squared <- chisq.test(police_killings_table, p = expected_proportions)
```

Data Sources: https://github.com/fivethirtyeight/data/tree/master/police-killings
https://www.theguardian.com/us-news/ng-interactive/2015/iun/01/the-counted-police-killings-us-database https://fivethirtyeight.com/features/where-police-have-killed-americans-in-2015/

## Police Killings in 2015 in R

$\square$ We see that the chi-squared test is significant. We can reject the null hypothesis. The number of police killings for a certain race-ethnicity, do not match the proportions of those race-ethnicities in the USA.

```
police_killings_chi_squared
Chi-squared test for given probabilities
data: police_killings_table
X-squared = 119.99, df = 4, p-value < 2.2e-16
```

$\square$ We can also look at the information stored in the "police_killings_chi_squared" object by clicking on it.

## Police Killings in 2015 in R



Chi-Squared Goodness of Fit Test in $R$

## Chi-Squared Goodness of Fit Test in $R$

```
###############################################
############## Chi Squared ###################
######### Goodness of Fit Test #############
################################################
# Movie Genres
movie_genre <- as.table(rbind(c(32, 24, 35, 29)))
dimnames(movie_genre) <- list(Status = c("Action", "Comedy", "Romance", "Horror"))
chisq.test(movie_genre)
# UT vs USA Racial-Ethnic Demographics (UNEQUAL proportions)
ut <- as.table(rbind(c(41, 4, 21, 19, 15)))
dimnames(ut) <- list(Status = c("White", "Black", "Latinx", "Asian", "Other"))
# Because we have an expected pattern for race-ethnicity in the USA, we need to tell }
# what those proportions are
expected_proportions <- c(.61, .13, .16, .05, .05)
#We then put the UT data and the expected proportions into the "chisq.test()" function
chisq.test(ut, p = expected_proportions)
# Skittles
skittles <- as.table(rbind(c(80, 87, 59, 70, 60)))
dimnames(skittles) <- list(Colors = c("Red", "Orange", "Yellow", "Green", "Purple"))
chisq.test(skittles)
```

Using summary data.

## Chi-Squared Goodness of Fit Test in R Output

$\square$ Movies genres are watched equally.
$\square$ Our UT sample is does not "fit" the USA population.
$\square$ Skittles colors are equally represented in a bag.

```
chisq.test(movie_genre)
    Chi-squared test for given probabilities
data: movie_genre
X-squared = 2.2, df = 3, p-value = 0.5319
    # We then put the UT data and the expected proportions into the "chisq.test()" function
    chisq.test(ut, p = expected_proportions)
    Chi-squared test for given probabilities
data: ut
X-squared = 73.551, df = 4, p-value = 4.035e-15
> chisq.test(skittles)
    Chi-squared test for given probabilities
data: skittles
X-squared = 8.4663, df = 4, p-value = 0.07592
```


## Using summary data.

